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The space (z, w, y) = (z) L (w, y) i1s non-degenerate, being an orthogonal sum
of (z) and the hyperbolic plane (w, y). It has an isometry such that

2> Z, We —W, y e —).

But v = 4(z — w) is mapped on v' = {(z + w) by this isometry. We have
settled the present case.

We finish the proof by induction. By the existence of an orthogonal basis
(Theorem 3.1), every subspace F of dimension > 1 has an orthogonal de-
composition into a sum of subspaces of smaller dimension. Let F = F; L F,
with dim F, and dim F, > 1. Then

oF = oF, LoF,.

Let ¢, = o|F, be the restriction of ¢ to F,. By induction, we can extend o, to
an isometry

c,:E—-E

Then ¢,(F1) = (¢,F,)*. Since oF, is perpendicular to 6F, = o,F, it follows
that oF, is contained in ,(F;). Let 0, = ¢|F,. Then the isometry

0-2:F2_’0-2F2:O-F2
extends by induction to an isometry
G, Ff — 6,(Fb).

The pair (6,, 7,) gives us an isometry of F;, 1 F; = E onto itself, as desired.

Corollary 10.3. Let E, E' be finite dimensional vector spaces with non-
degenerate symmetric forms, and assume that they are isometric. Let F, F' be
subspaces, and let o:F — F' be an isometry. Then o can be extended to an
isometry of E onto E'.

Proof. Clear.

Let E be a space with a symmetric form g, and let F be a null subspace.
Then by Lemma 10.1, we can embed F in a hyperbolic subspace H whose
dimension is 2 dim F.

As applications of Theorem 10.2, we get several corollaries.

Corollary 10.4. Let E be a finite dimensional vector space with a non-
degenerate symmetric form. Let W be a maximal null subspace, and let W' be
some null subspace. Then dim W' = dim W, and W' is contained in some
maximal null subspace, whose dimension is the same as dim W.
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Proof. That W’ is contained in a maximal null subspace foliows by Zorn’s
lemma. Supposedim W’ = dim W. We have an isometry of W onto a subspace
of W’ which we can extend to an isometry of E onto itself. Then ¢~ '(W')is a
null subspace containing W, hence is equal to W, whence dim W = dim W'
Our assertions follow by symmetry.

Let E be a vector space with a non-degenerate symmetric form. Let W be a
null subspace. By Lemma 10.1 we can embed W in a hyperbolic subspace H of
E such that W is the maximal null subspace of H, and H is non-degenerate. Any
such H will be called a hyperbolic enlargement of W.

Corollary 10.5. Let E be a finite dimensional vector space with a non-
degenerate symmetric form. Let W and W' be maximal null subspaces. Let H,
H' be hyperbolic enlargements of W, W' respectively. Then H, H' are isometric
and so are H+ and H'*-.

Proof. We have obviously an isometry of H on H’, which can be extended
to an isometry of E onto itself. This isometry maps H* on H'*, as desired.

Corollary 10.6. Let g;, g,, h be symmetric forms on finite dimensional vector
spaces over the field of k. If g, @ h is isometric to g, ® h, and if g,, g, are
non-degenerate, then g, is isometric to g,.

Proof. Letg, beaformon E, and g, a form on E,. Let h be a form on F.
Then we have an isometry between F @ E, and F @ E,. Extend the identity
id: F — F to an isometry o of F © E, to F & E, by Corollary 10.3. Since E,
and E, are the respective orthogonal complements of F in their two spaces, we
must have o(E;) = E,, which proves what we wanted.

If g is a symmetric form on E, we shall say that g is definite if g(x, x) # 0
forany x € E, x # 0 (i.e. x2 # 0 if x # 0).

Corollary 10.7. Let g be a symmetric form on E. Then g has a decomposition
as an orthogonal sum

g9 = Yo @ ghyp @ Gdef

where go is a null form, gy, is hyperbolic, and ga is definite. The form
Ihyp D et is non-degenerate. The forms go, gn,p, and gq; are uniquely
determined up to isometries.

Proof. The decomposition g = g, @ g, where g, is a null form and g,
is non-degenerate is unique up to an isometry, since g, corresponds to the
kernel of g.

We may therefore assume that g is non-degenerate. If

9=09n® g
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where g, is hyperbolic and g, is definite, then g, corresponds to the hyperbolic
enlargement of a maximal null subspace, and by Corollary 10.5 it follows that
g, is uniquely determined. Hence g, is uniquely determined as the orthogonal
complement of g,. (By uniquely determined, we mean of course up to an
isometry.)

We shall abbreviate gy, by g, and g4 by g,.

§11. THE WITT GROUP

Let g, ¢ by symmetric forms on finite dimensional vector spaces over k. We
shall say that they are equivalent if g, is isometric to ¢,. The reader will verify
at once that this is an equivalence relation. Furthermore the (orthogonal) sum
of two null forms is a null form, and the sum of two hyperbolic forms is hyperbolic.
However, the sum of two definite forms need not be definite. We write our
equivalence g ~ ¢. Equivalence is preserved under orthogonal sums, and hence
equivalence classes of symmetric forms constitute a monoid.

Theorem 11.1. The monoid of equivalence classes of symmetric forms (over
the field k) is a group.

Proof. We have to show that every element has an additive inverse. Let g
be a symmetric form, which we may assume definite. We let —g be the form
such that (—g)(x, y) = —g(x, y). We contend that g @ —g is equivalent to 0.
Let E be the space on which g is defined. Then g @ —g is defined on E @ E.
Let W be the subspace consisting of all pairs (x, x) with x € E. Then W is a null
spaceforg @ —g. Sincedim(E @ E) = 2 dim W, it follows that W is a maximal
null space, and that g @ —g is hyperbolic, as was to be shown.

The group of Theorem 11.1 will be called the Witt group of %, and will be
denoted by W(k). It is of importance in the study of representations of elements
of k by the quadratic form f arising from g [i.e. f(x) = g(x, x)], for instance
when one wants to classify the definite forms f.

We shall now define another group, which is of importance in more functorial
studies of symmetric forms, for instance in studying the quadratic forms arising
from manifolds in topology.

We observe that isometry classes of non-degenerate symmetric forms (over
k) constitute a monoid M(k), the law of composition being the orthogonal sum.
Furthermore, the cancellation law holds (Corollary 10.6). We let

cl: M(k) - WG(k)
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be the canonical map of M(k) into the Grothendieck group of this monoid,
which we shall call the Witt-Grothendieck group over k. As we know, the
cancellation law implies that cl is injective.

If g is a symmetric non-degenerate form over k, we define its dimension
dim g to be the dimension of the space E on which it is defined. Then it is clear
that

dim(g ® ¢') = dim g + dim ¢'.
Hence dim factors through a homomorphism
dim: WG(k) - Z.

This homomorphism splits since we have a non-degenerate symmetric form of
dimension 1.

Let WG(k) be the kernel of our homomorphism dim. If g is a symmetric
non-degenerate form we can define its determinant det(g) to be the determinant
of a matrix G representing g relative to a basis, modulo squares. This is well
defined as an element of k*/k*2. We define det of the O-form to be 1. Then det is
a homomorphism

det: M(k) — k*/k*2,

and can therefore be factored through a homomorphism, again denoted by
det, of the Witt-Grothendieck group, det : WG(k) — k*/k*2.

Other properties of the Witt-Grothendieck group will be given in the
eXercises.

EXERCISES

1. (a) Let E be a finite dimensional space over the complex numbers, and let
hExE-C
be a hermitian form. Write
h(x, y) = g(x, y) + if (x, )

where g, f are real valued. Show thatg, f are R-bilinear, g is symmetric, f is
alternating.

(b) Let E be finite dimensional over C. Let g: E x E —» C be R-bilinear. Assume
that for all x € E, the map y — g(x, y) is C-linear, and that the R-bilinear form

f(X, y) = g(x, J’) - g(y’ X)
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is real-valued on E x E. Show that there exists a hermitian form h on E and a
symmetric C-bilinear form y on E such that 2ig = h + . Show that h and ¢ are
uniquely determined.

2. Prove the real case of the unitary spectral theorem: If E is a non-zero finite dimensional
space over R, with a positive definite symmetric form, and U : E — E is a unitary linear
map, then E has an orthogonal decomposition into subspaces of dimension 1 or 2,
invariant under U. If dim E = 2, then the matrix of U with respect to any ortho-

normal basis is of the form
cosf —sinf -1 0\/cos 6 —sinf
sinfd cosé 0 1/\sin@ cosb)
depending on whether det(U) = 1 or —1. Thus U is a rotation, or a rotation followed
by a reflection.
3. Let E be a finite-dimensional, non-zero vector space over the reals, with a positive

definite scalar product. Let T: E — E be a unitary automorphism of E. Show that E
is an orthogonal sum of subspaces

E=E/Ll---1E,

such that each E; is T-invariant, and has dimension 1 or 2. If E has dimension 2, show
that one can find a basis such that the matrix associated with T with respect to this

basis is
cos@ —sinf o —cos 0 sin 6
T
sinf  cos@ sin cos 8)°
accordingasdet T = lordet T = —1.

4. Let E be a finite dimensional non-zero vector space over C, with a positive definite
hermitian product. Let A, B: E — E be a hermitian endomorphism. Assume that
AB = BA. Prove that there exists a basis of E consisting of common eigenvectors
for A and B.

5. Let E be a finite-dimensional space over the complex, with a positive definite hermitian
form. Let S be a set of (C-linear) endomorphisms of E having no invariant subspace
except 0 and E. (This means that if F is a subspace of E and BF < F for all Be S, then
F=0or F =E.) Let A be a hermitian map of E into itself such that AB = BA for all
BeS. Show that A = Al for some real number A. [Hint: Show that there exists
exactly one eigenvalue of 4. If there were two eigenvalues, say 4, # 4,, one could find
two polynomials f and g with real coefficients such that f(4) # 0, g(A) # 0 but
f(A)g(A) = 0. Let F be the kernel of g(4) and get a contradiction.]

6. Let E be as in Exercise 5. Let T be a C-linear map of E into itself. Let
A=XT + T*).

Show that A is hermitian. Show that T can be written in the form 4 + iB where A, B
are hermitian, and are uniquely determined.

7. Let S be a commutative set of C-linear endomorphisms of E having no invariant sub-
space unequal to 0 or E. Assume in addition that if B € S, then B* € S. Show that each
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element of S is of type af for some complex number o. [Hint: Let ByeS. Let

A = XB, + BY).

Show that 4 = Al for some real A.]

8. Anendomorphism B of E is said to be normal if Bcommutes with B*. State and prove a
spectral theorem for normal endomorphisms.

Symmetric endomorphisms

For Exercises 9, 10 and 11 we let E be a non-zero finite dimensional vector space over
R, with a symmetric positive definite scalar product g, which gives rise to a norm | | on E.

Let A : E — E be a symmetric endomorphism of E with respect to g. Define A = 0
to mean {Ax, x) = 0 for all x € E.

9. (a) Show that A = 0 if and only if all eigenvalues of A belonging to non-zero
eigenvectors are = 0. Both in the hermitian case and the symmetric case, one
says that A is semipositive if A = 0, and positive definite if (Ax, x) > 0 for all
x#+ 0.

(b) Show that an automorphism A of E can be written in a unique way as a product
A = UP where U is real unitary (that is, ‘UU = [), and P is symmetric positive
definite. For two hermitian or symmetric endomorphisms A, B, define A = B to
mean A — B = 0, and similarly for A > B. Suppose A > 0. Show that there are
two real numbers « > 0 and 8 > 0 such that o/ = A = BI.

10. If A is an endomorphism of E, define its norm |A| to be the greatest lower bound of
all numbers C such that |Ax| = C|x/| for all x € E.
(a) Show that this norm satisfies the triangle inequality.
(b) Show that the series

A2
expd) =l +A+ 57+
converges, and if A commutes with B, then exp(A + B) = exp(A) exp(B).
If A is sufficiently close to I, show that the series

_@a-n_@a-p
T 7

log(A)

converges, and if A commutes with B, then

log(AB) = log A + log B.

(c) Using the spectral theorem, show how to define log P for arbitrary positive
definite endomorphisms P.

11. Again, let E be non-zero finite dimensional over R, and with a positive definite
symmetric form. Let A : £ — E be a linear map. Prove:
(a) IfAissymmetric (resp. alternating), then exp(A) is symmetric positive definite
(resp. real unitary).
(b) If A is a linear automorphism of E sufficiently close to I, and is symmetric
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12.

13.

14.

15.

positive definite (resp. real unitary), then log A is symmetric (resp.
alternating).
(c) More generally, if A is positive definite, then log A is symmetric.

Let R be a commutative ring, let E, F be R-modules, and let f: E —» F be a mapping.
Assume that multiplication by 2 in F is an invertible map. Show that fis homogeneous
quadratic if and only if f satisfies the parallelogram law:

S+ +fx -y =2 +2oV)

for all x, ye E.

(Tate) Let E, F be complete normed vector spaces over the real numbers. Let
f: E - F be a map having the following property. There exists a number C > 0 such
that for all x, y € E we have

[+ —f) -/ =C

Show that there exists a unique additive map g : E — F such that |g — f| is bounded
(i.e. |g(x) — f(x)|is bounded as a function of x). Generalize to the bilinear case. [Hint:
Let

g(x) = lim /@)
n— a0 2"

(Tate) Let S be a set and f:5 — S a map of S into itself. Let #:5 — R be a real
valued function. Assume that there exists a real number d > 1 such that h o f — df
is bounded. Show that there exists a unique function hsuch that 4, — A is bounded,
and hyo f = dhy. [Hint: Let hy(x) = lim h(f"(x))/d" ]

Define maps of degree > 2, from one module into another. [Hint: For degree 3,
consider the expression

J

Jx+y+)—fx+)—fx+2)—f+2+f)+f) +/(2)]

Generalize the statement proved for quadratic maps to these higher-degree maps, i.e.
the uniqueness of the various multilinear maps entering into their definitions.

Alternating forms

16.

17.

Let E be a vector space over a field k and let g be a bilinear form on E. Assume that
whenever x, y € E are such that g(x, y) = 0, then g(y, x) = 0. Show that g is symmetric
or alternating.

Let E be a module over Z. Assume that E is free, of dimension n > 1, and let f be a

bilinear alternating form on E. Show that there exists a basis {¢;} (i = 1,...,n) and
an integer r such that 2r < n,

€€ =4y, €3:€4=0Qy, ...,€3 1€ =4q

where ay,...,a,€Z, a; # 0, and a; divides g;,, for i=1,...,r — 1 and finally
e;-e; = 0 for all other pairs of indices i < j. Show that the ideals Za; are uniquely
determined. [Hint: Consider the injective homomorphism ¢, : E — EV of E into the
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dual space over Z, viewing ¢ (E) as a free submodule of EV.]. Generalize to principal
rings when you know the basis theorem for modules over these rings.

Remark. A basis as in Exercise 18 is called a symplectic basis. For one use of
such a basis, see the theory of theta functions, as in my Introduction to Algebraic and
Abelian Functions (Second Edition, Springer Verlag), Chapter VI, §3.

18. Let E be a finite-dimensional vector space over the reals, and let { , ) be a symmetric
positive definite form. Let Q be a non-degenerate alternating form on E. Show that
there exists a direct sum decomposition

E=E, ®E,
having the following property. If x, y € E are written
X = (X, X,) with x,€E, and x,€E,,
y= 1) with yi€E, and y,€E,,

then Q(x, y) = (xy, y2) — {x,, y;). [Hint: Use Corollary 8.3, show that A is positive
definite, and take its square root to transform the direct sum decomposition obtained
in that corollary.}

19. Show that the pfaffian of an alternating n x n matrix is O when # is odd.

20. Prove all the properties for the pfaffian stated in Artin’s Geometric Algebra (Inter-
science, 1957), p. 142.

The Witt group

21. Show explicitly how W(k) is a homomorphic image of W G(k).

22. Show that WG(k) can be expressed as a homomorphic image of Z[k*/k**] [Hint:
Use the existence of orthogonal bases.}

23. Witt’s theorem is still true for alternating forms. Prove it or look it up in Artin (ref.
in Exercise 20).

SLy(R)

There is a whole area of linear algebraic groups, giving rise to an extensive algebraic
theory as well as the possibility of doing Fourier analysis on such groups. The group
SL,(R) (or SL,(C)) can serve as a prototype, and a number of basic facts can be easily
verified. Some of them are listed below as exercises. Readers wanting to see solutions can
look them up in [JoL 01], Spherical Inversion on SL,(R), Chapter L.

24. Iwasawa decomposition. We start with GL,(R). Let:
G = GL,(R);
K = subgroup of real unitary n x n matrices,

U = group of real unipotent upper triangular matrices, that is having components 1
on the diagonal, arbitrary above the diagonal, and 0 below the diagonal;
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25.

26.

27.

28.

29.

30.

A = group of diagonal matrices with positive diagonal components.

Prove that the product map U x 4 x K — UAK < G is actually a bijection. This
amounts to Gram-Schmidt orthogonalization. Prove the similar statement in the
complex case, that is, for G(C) = GL,(C), K(C) = complex unitary group, U(C) =
complex unipotent upper triangular group, and A the same group of positive diag-
onal matrices as in the real case.

Let now G = SL,(R), and let K, A be the corresponding subgroups having deter-
minant 1. Show that the product U x 4 x K — UAK again gives a bijection with G.

Let a be the R-vector space of real diagonal matrices with trace 0. Let a¥ be the
dual space. Let a; (i =1,...,n— 1) be the functional defined on an element H =
diag(hy,...,h,) by o;(H) = h; — hiyy. (@) Show that {a,...,a,—1} is a basis of a¥
over R. (b) Let H; ;1 be the diagonal matrix with #; =1, by = —1, and ; =0
for j+#i,i+1. Show that {H,,,...,H, 1.} is a basis of a. (c) Abbreviate
H; iy =H; (i=1,...,n—1). Let o/ € a¥ be the functional such that «/(H;) = J;
(=1 if i=j and 0 otherwise). Thus {a),...,a, ;} is the dual basis of
{Hi,...,H,_1}. Show that

a(H)=h +-+h.

1

The trace form. Let Mat,(R) be the vector space of real n x n matrices. Define the
twisted trace form on this space by

B(X,Y) =tr(X'Y) = <X, YD,

As usual, 'Y is the transpose of a matrix Y. Show that B; is a symmetric positive
definite bilinear form on Mat,(R). What is the analogous positive definite hermitian
form on Mat,(C)?

Positivity. On a (real diagonal matrices with trace 0) the form of Exercise 27 can be
defined by tr(XY), since elements X, Y € a are symmetric. Let of = {a1,..., %1}
denote the basis of Exercise 26. Define an element H € a to be semipositive (writen
Hz0)ifo;(H)=0foralli=1,...,n—1. Foreach e € a¥, let H, € a represent «
with respect to B, that is (H,, H) = a(H) for all H € a. Show that H# = 0 if and
only if
n—1
H=Y siHy with s; 2 0.

=1
Similarly, define H to be positive and formulate the similar condition with s; > 0.

Show that the elements na (i =1,...,n— 1) can be expressed as linear combina-
tions of ay, ..., &, with positive coefficients in Z.

Let W be the group of permutations of the diagonal elements in the vector space a of
diagonal matrices. Show that a is a fundamental domain for the action of W on a
(i.., given H € a, there exists a unique H* = 0 such that H* = wH for some
weW.



CHAPTER XVI

The Tensor Product

Having considered bilinear maps, we now come to multilinear maps and basic
theorems concerning their structure. There is a universal module representing
multilinear maps, called the tensor product. We derive its basic properties, and
postpone to Chapter XIX the special case of alternating products. The tensor
product derives its name from the use made in differential geometry, when this
product is applied to the tangent space or cotangent space of a manifold. The
tensor product can be viewed also as providing a mechanism for “extending the
base”; that is, passing from a module over a ring to a module over some algebra
over the ring. This “extension” can also involve reduction modulo an ideal,
because what matters is that we are given a ring homomorphism f: A — B, and
we pass from modules over A to modules over B. The homomorphism f can be
of both types, an inclusion or a canonical map with B = A/J for some ideal J,
or a composition of the two.

I have tried to provide the basic material which is immediately used in a
variety of applications to many fields (topology, algebra, differential geometry,
algebraic geometry, etc.).

§1. TENSOR PRODUCT

Let R be a commutative ring. If E,, ..., E,, F are modules, we denote by
LYE,,...,E,; F)
the module of n-multilinear maps

f:E{x---x E,—F.

601
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We recall that a multilinear map is a map which is linear (i.e., R-linear) in each
variable. We use the words linear and homomorphism interchangeably. Unless
otherwise specified, modules, homomorphisms, linear, multilinear refer to the ring R.

One may view the multilinear maps of a fixed set of modules E, ... ., E, as the
objects of a category. Indeed, if

f:Eyx---xE,»F and ¢g:E, x---xXE,»G

are multilinear, we define a morphism f — g to be a homomorphism h: F - G
which makes the following diagram commutative:

F
e
E, x.-- xE, 1;1
N
G
A universal object in this category is called a tensor product of E,, ..., E,

(over R).

We shall now prove that a tensor product exists, and in fact construct one in a
natural way. By abstract nonsense, we know of course that a tensor product is
uniquely determined, up to a unique isomorphism.

Let M be the free module generated by the set of all n-tuples (x,..., Xx,),
(x; € E)), i.e. generated by the set E, x --- x E,. Let N be the submodule
generated by all the elements of the following type:

(Xgy oo X+ X ooy X)) = (Xqy ooy Xy ooy Xp) — (Xqy e ey Xiyeves Xp)
(X1 es Xy ..oy Xy) — a(Xqy .00y X,)
for all x; € E;, x; € E;, a € R. We have the canonical injection
E, x---xE,-M

of our set into the free module generated by it. We compose this map with the
canonical map M — M/N on the factor module, to get a map

¢:E; x---x E, - M/N.

We contend that ¢ is multilinear and is a tensor product.
It is obvious that ¢ is multilinear—our definition was adjusted to this
purpose. Let

fiEyx---xE -G
be a multilinear map. By the definition of free module generated by

E x---xE,
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we have an induced linear map M — G which makes the following diagram
commutative:

Since f'is multilinear, the induced map M — G takes on the value 0 on N. Hence
by the universal property of factor modules, it can be factored through M/N,
and we have a homomorphism f, : M/N — G which makes the following dia-
gram commutative:

M/N

Since the image of ¢ generates M/N, it follows that the induced map f, is
uniquely determined. This proves what we wanted.
The module M/N will be denoted by

E,® - -®E, oralso (X E,.
i=1

We have constructed a specific tensor product in the isomorphism class of tensor
products, and we shall call it the tensor product of E|, . .., E,. If x; € E;, we write

P15 X) =X @ @ Xy =X, ®g - g X
We have for all i,
X Q@ ®ax;® - @ x, =ax; @ - @ x,),
R @M+ xX)® - ®x,
=X Q- ®x)+ (X ® - @X® - ®x,)
for x;, x;e E;and ae R.
If we have two factors, say E ® F, then every element of E® F can be

written as a sum of terms x ® ywith x € E and y € F, because such terms generate
E®FoverR,and a(x®y) =ax® y fora e R.
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Remark. If an element of the tensor product is 0, then that element can
already be expressed in terms of a finite number of the relations defining the
tensor product. Thus if E is a direct limit of submodules E; then

limFQE =F®lmE, = FQE.

In particular, every module is a direct limit of finitely generated submodules,
and one uses frequently the technique of testing whether an element of F ® E is
0 by testing whether the image of this element in F ® E, is O when E; ranges over
the finitely generated submodules of E.

Warning. The tensor product can involve a great deal of collapsing between
the modules. For instance, take the tensor product over Z of Z/mZ and Z/nZ
where m, n are integers > 1 and are relatively prime. Then the tensor product

ZnZ ® Z/mZ = 0.

Indeed, we haven(x ® y) = (nx) ® y = 0and m(x ® y) = x ® my = 0. Hence
x®y = 0forall xeZ/nZ and y € Z/mZ. Elements of type x ® y generate the
tensor product, which is therefore 0. We shall see later conditions under which
there is no collapsing.

In many subsequent results, we shall assert the existence of certain linear
maps from a tensor product. This existence is proved by using the universal
mapping property of bilinear maps factoring through the tensor product. The
uniqueness follows by prescribing the value of the linear maps on elements of
type x ® y (say for two factors) since such elements generate the tensor product.

We shall prove the associativity of the tensor product.

Proposition 1.1. Let E,, E,, E5 be modules. Then there exists a unique
isomorphism

(E,®E)®E; > E, ®(E,®Ej)
such that
xR@N®z—x@ (Y ® 2)

forxeE,,yeE,and ze E;.

Proof. Since elements of type (x ® y) ® z generate the tensor product, the
uniqueness of the desired linear map is obvious. To prove its existence, let
x€ E,. The map

AX:EZ X E3_’(E1 ®E2)®E3
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such that A,(y, z) = (x ® y) ® z is clearly bilinear, and hence factors through a
linear map of the tensor product

I E,®Eys—>(E;® E;) ® E;.
The map
E, x(E;,®E;) > (E,QE)®E;
such that
(x, 0) > 2 (%)

for xeE, and a€ E, ® E; is then obviously bilinear, and factors through a
linear map

E,®(E,®E;) > (E;, ®E,) ® E;,

which has the desired property (clear from its construction).

Proposition 1.2. Let E, F be modules. Then there is a unique isomorphism
EQF->FQ®E
suchthat x ® y—>y ® x for xe Eand ye F.

Proof. The map E x F —» F ® E such that (x, y)— y ® x is bilinear, and
factors through the tensor product E ® F, sending x ® y on y ® x. Since this
last map has an inverse (by symmetry) we obtain the desired isomorphism.

The tensor product has various functorial properties. First, suppose that
fit E; > E; i=1,...,n
is a collection of linear maps. We get an induced map on the product,
I1f4:11E-TIE:

If we compose [ | f; with the canonical map into the tensor product, then we get
an induced linear map which we may denote by T(f,, ..., f,) which makes the
following diagram commutative:

Eix - --xXE,——E ®  -QE,
Il T(fi,-- s 5

E x x E,——E ® ®E,
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It is immediately verified that T is functorial, namely that if we have a com-
posite of linear maps f; o g; (i = 1,..., n) then

T(flogl""’f;xogn): T(fl"-"fn)oT(gl"'-agn)

and
T(d,...,id) = id.

We observe that T(f;,..., f,) is the unique linear map whose effect on an
element X, ® --- @ x,of £} ® --- ® E,, is

Xy @ @ x> fi(x) ® -+ @ fulxn):

We may view T as a map

® E:’ ® Ei)a
i= i=1

i=1

i=1

and the reader will have no difficulty in verifying that this map is multilinear.
We shall write out what this means explicitly for two factors, so that our map can
be written

(f, 9 T(f, 9)
Given homomorphisms f: F' — F and g4, g, : E' - E, then
T(f, 9, + g2) = T(f, g91) + T(f, 92),
T(f7 agl) = aT(f’ gl)

In particular, select a fixed module F, and consider the functor © = 7 (from
modules to modules) such that

(E)=FQ®E.
Then 7 gives rise to a linear map
1: L(E', E) = L(7(E"), ®(E))
for each pair of modules E’, E, by the formula
w(f) = T(d, f).

Remark. By abuse of notation, it is sometimes convenient to write

fi® - ® f, insteadof T(fy,...,f,).



XVl §2 BASIC PROPERTIES 607

This should not be confused with the tensor product of elements taken in the
tensor product of the modules

L(E}, E))® - ® L(E,, E,).

The context will always make our meaning clear.

§2. BASIC PROPERTIES

The most basic relation relating linear maps, bilinear maps, and the tensor
product is the following: For three modules E, F, G,

L(E, L(F, G)) ~ L*(E,F;G) ~ LIE® F, G).

The isomorphisms involved are described in a natural way.
(i) L*(E, F; G) » L(E, L(F, G)).
If f: E x F — G is bilinear, and x € E, then the map
i F—-G

such that f(y) = f(x, y) is linear. Furthermore, the map x> f is linear, and
is associated with f to get (i).

(ii) L(E, L(F, G)) » L¥(E, F; G).
Let o € L(E, L(F, G)). Welet f,: E x F — G be the bilinear map such that

Jolxs ¥) = o(x)(y).

Then ¢ — f,, defines (ii).
It is clear that the homomorphisms of (i) and (ii) are inverse to each other
and therefore give isomorphisms of the first two objects in the enclosed box.

(i) LXE, F;G) - L(E® F, G).

This is the map f — f, which associates to each bilinear map f the induced
linear map on the tensor product. The association f + f, is injective (because
f, 1s uniquely determined by f), and it is surjective, because any linear map
of the tensor product composed with the canonical map E x F - E ® F gives
rise to a bilinear map on E x F.
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n

Proposition 2.1. Let E = (P E, be a direct sum. Then we have an isomor-
i=1
phism

FREo @ (FQE).
i=1

Proof. The isomorphism is given by abstract nonsense. We keep F fixed,
and consider the functor 7: X +— F ® X. As we saw above, 7 is linear. We have
projections 7;: E — E of E on E;. Then

T;oT; = T, ﬂ:ioﬂ:j=0 lf l?éj,

We apply the functor 7, and see that 7(x;) satisfies the same relations, hence gives
a direct sum decomposition of 1(E) = F ® E. Note that t(n;) = id ® =;.

Corollary 2.2. Let I be an indexing set, and E = () E;. Then we have an
iel
isomorphism

iel iel

(@Ei>®Fz(-|:—)(Ei®F).

Proof. Let S be a finite subset of I. We have a sequence of maps
<®E:) X F"@(Ei®F)“’®(Ei®F)
ieS ieS iel

the first of which is bilinear, and the second is linear, induced by the inclusion of
Sinl. Thefirstisthe obviousmap. If§ < §',then a trivial commutative diagram
shows that the restriction of the map

(@—)E,.) x F>@(E ®F)
ieS’ iel

induces our preceding map on the sum for i € S. But we have an injection

(@Ei) X F > ((—BE,) x F.
ieS ieS’
Hence by compatibility, we can define a bilinear map

(@) F-@@en.

iel iel
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and consequently a linear map
(@E)@F—»@(E@F).
iel iel

In a similar way, one defines a map in the opposite direction, and it is clear
that these maps are inverse to each other, hence give an isomorphism.

Suppose now that E is free, of dimension 1 over R. Let {v} be a basis, and
consider F ® E. Everyelement of F ® E can be written asa sum ofterms y @ av
withye Fanda e R. However,y ® av = ay ® v. Ina sum of such terms, we can
then use linearity on the left,

Z(J’i@v):(Zyi)@v, y;eF.
i=1 i=1

Hence every element is in fact of type y ® v with some ye F.
We have a bilinear map
FxE->F
such that (y, av) — ay, inducing a linear map

FQE—F.

We also have a linear map F — F ® E given by y— y ® v. It is clear that these
maps are inverse to each other, and hence that we have an isomorphism

F®E~x~F.
Thus every element of F ® E can be written uniquely in the form y ® v, ye F.
Proposition 2.3. Let E be free over R, with basis {v;};.;. Then every element
of F ® E has a unique expression of the form

z%@vi’ yieF

iel
with almost all y;, = 0.

Proof. This follows at once from the discussion of the 1-dimensional case,
and the corollary of Proposition 2.1.

Corollary 2.4. Let E, F be free over R, with bases {v;};c; and {w;};.; re-
spectively. Then E ® F is free, with basis {v; ® w;}. We have

dim(E ® F) = (dim E)(dim F).
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Proof. Immediate from the proposition.

We see that when E is free over R, then there is no collapsing in the tensor
product. Every element of F ® E can be viewed as a “formal” linear combina-
tion of elements in a basis of E with coefficients in F.

In particular, we see that R ® E (or E ® R) is isomorphic to E, under the
correspondence x — x ® 1.

Proposition 2.5. Let E, F be free of finite dimension over R. Then we have an
isomorphism

Endg(E) ® Endg(F) - Endgz(E ® F)
which is the unique linear map such that

f®g—T(f.9)
for € Endg(E) and g € Endg(F).

[We note that the tensor product on the left is here taken in the tensor
product of the two modules Endg(E) and Endg(F).]

Proof. Let {v;} be a basis of E and let {w;} be a basis of F. Then {v; ® w;}
is a basis of E ® F. For each pair of indices (i, j') there exists a unique endo-
morphism f = f; , of Eand g = g; ; of F such that

fw)=v, and f(v,)=0 ifv#i
gw;) =w; and g(w,) =0 ifu#j

Furthermore, the families { f; .} and {g; ;} are bases of Endg(E) and Endg(F)
respectively. Then

v ®wy i (v, ) = (o)
0 if (v, p) # (i, j).
Thus the family {T(f;;,g; )} is a basis of Endg(E ® F). Since the family

{f.+ ® g, j}isabasis of Endg(E) ® Endg(F), the assertion of our proposition is
now clear.

T(f, )0, ®w,) = {

In Proposition 2.5, we see that the ambiguity of the tensor signin f ® gisin
fact unambiguous in the important special case of free, finite dimensional
modules. We shall see later an important application of Proposition 2.5 when
we discuss the tensor algebra of a module.

Proposition 2.6. Let

0-E3ELE -0
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be an exact sequence, and F any module. Then the sequence
FRE->FRE-F®E -0
is exact.

Proof. Given x" € E” and y € F, there exists x € E such that x” = y(x), and
hence y ® x” is the image of y ® x under the linear map

FRE-FQFE.

Since elements of type y ® x” generate F ® E”, we conclude that the preceding
linear map is surjective. One also verifies trivially that the image of

FOFE->FQ®E
is contained in the kernel of
FRE->FQ®E"
Conversely, let I be the image of F ® E' > F ® E, and let
f(F®E)/I->F®E"
be the canonical map. We shall define a linear map
g:F®E - (F®E)/I

such that g o f =id. This obviously will imply that f is injective, and hence
will prove the desired converse.

Let ye F and x" € E”. Let x € E be such that y/(x) = x”". We define a map
F x E" - (F ® E)/I by letting

(0, x)—>y®x (mod ),

and contend that this map is well defined, i.e. independent of the choice of x
such that y(x) = x". If Y(x,) = Y(x,) = x”, then Y(x, — x,) =0, and by
hypothesis, x, — x, = ¢(x') for some x’ € E’. Then

YVRX —y®@x, =y @ (x; — x3) =y @ o(xX).

This shows that y ® x; = y ® x, (mod I), and proves that our map is well
defined. It is obviously bilinear, and hence factors through a linear map g, on
the tensor product. It is clear that the restriction of g o f on elements of type
y ® x is the identity. Since these elements generate F ® E, we conclude that f
is injective, as was to be shown.
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It is not always true that the sequence
0o FRE->FR®E->FQ®E" -0

is exact. It is exact if the first sequence in Proposition 2.6 splits, ie. if E is
essentially the direct sum of E’ and E”. This is a trivial consequence of Pro-
position 2.1, and the reader should carry out the details to get accustomed to the
formalism of the tensor product.

Proposition 2.7. Let a be an ideal of R. Let E be a module. Then the map
(R/a) x E — E/aE induced by
(a, x)>ax (mod aE), aeR,xeE
is bilinear and induces an isomorphism
(R/a) ® E 5 E/aE.

Proof. Our map (g, x) — ax (mod aE) clearly induces a bilinear map of
R/a x E onto E/aE, and hence a linear map of R/a ® E onto E/aE. We can
construct an inverse, for we have a well-defined linear map

E->Ra®E

such that x — 1 ® x (where 1 is the residue class of 1 in R/a). It is clear that aE
is contained in the kernel of this last linear map, and thus that we obtain a
homomorphism

E/aE - R/a® E,
which is immediately verified to be inverse to the homomorphism described in
the statement of the proposition.

The association E+ E/aE ~ R/a ® E is often called a reduction map. In
§4, we shall interpret this reduction map as an extension of the base.

§3. FLAT MODULES

The question under which conditions the left-hand arrow in Proposition 2.6
is an injection gives rise to the theory of those modules for which it is, and we
follow Serre in calling them flat. Thus formally, the following conditions are
equivalent, and define a flat module F, which should be called tensor exact.

F 1. For every exact sequence

E/_bE_)EI/
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the sequence
FRE->F®E->FQ®E"

is exact.

F 2. For every short exact sequence
0-E->E->E -0
the sequence
0-FRQE->FRE-F®E -0
is exact.

F 3. For every injection 0 —» E' — E the sequence
0-F®FE->FQ®E

1s exact.

It is immediate that F 1 implies F 2 implies F 3. Finally, we see that F 3 implies
F 1 by writing down the kernel and image of the map E' — E and applying F 3.
We leave the details to the reader.

The following proposition gives tests for flatness, and also examples.

Proposition 3.1.
(1) The ground ring is flat as module over itself.
(ii) Let F = @ F,be adirect sum. Then F is flat if and only if each F  is flat.
(iii) A projective module is flat.
The properties expressed in this proposition are basically categorical, cf. the
comments on abstract nonsense at the end of the section. In another vein, we
have the following tests having to do with localization.
Proposition 3.2.
(i) Let S be a multiplicative subset of R. Then S™'R is flat over R.

(1) A module M is flat over R if and only if the localization M, is flat over R,
for each prime ideal p of R.

(iii) Let R be a principal ring. A module F is flat if and only if F is torsion free.

The proofs are simple, and will be left to the reader. More difficult tests for
flatness will be proved below, however.

Examples of non-flatness. If R is an entire ring, and a module M over R
has torsion, then M is not flat. (Prove this, which is immediate.)
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There is another type of example which illustrates another bad phenomenon.
Let R be some ring in a finite extension K of Q, and such that R is a finite
module over Z but not integrally closed. Let R’ be its integral closure. Let p be
a maximal ideal of R and suppose that pR’ is contained in two distinct maximal
ideals %, and ¥5,. Then it can be shown that R’ is not flat over R, otherwise R’
would be free over the local ring R, and the rank would have to be 1, thus
precluding the possibility of the two primes %5, and 3,. It is good practice for
the reader actually to construct a numerical example of this situation. The same
type of example can be constructed with a ring R = k[x,y], where k is an
algebraically closed field, even of characteristic 0, and x, y are related by an
irreducible polynomial equation f(x,y) = O over k. We take R not integrally
closed, such that its integral closure exhibits the same splitting of a prime p of
R into two primes. In each one of these similar cases, one says that there is a
singularity at p.

As a third example, let R be the power series ring in more than one variable
over a field k. Let m be the maximal ideal. Then m is not flat, because otherwise,
by Theorem 3.8 below, m would be free, and if R = k{[x|, ..., x,]], then x,,
..., x, would be a basis for m over R, which is obviously not the case, since
X1, x5 are linearly dependent over R when n = 2. The same argument, of course,
applies to any local ring R such that m/m? has dimension = 2 over R/m.

Next we come to further criteria when a module is flat. For the proofs, we
shall snake it all over the place. Cf. the remark at the end of the section.

Lemma 3.3. Let F be flat, and suppose that
0O-N-M->F-0
is an exact sequence. Then for any E, we have an exact sequence

0-N®E-M®@E->FQ®E-NO

Proof. Represent E as a quotient of a flat L by an exact sequence

0-K->L->E-NO.
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Then we have the following exact and commutative diagram:

0

N®K M®K—FQ@ K—0

0—NQL—MRL—FQ®L

: !
N®E—MQE

0 0

The top right 0 comes by hypothesis that F is flat. The 0 on the left comes from
the fact that L is flat. The snake lemma yields the exact sequence

0O-N®E-MQKE

which proves the lemma.

Proposition 3.4. Let
0o F>F->F' -0

be an exact sequence, and assume that F" is flat. Then F is flat if and only if F’
is flat. More generally, let

0> F°>F'»...5F"50

be an exact sequence such that F*, ..., F" are flat. Then F°is flat.
q
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Proof. Let 0 - E' — E be an injection. We have an exact and commuta-
tive diagram:

00— F QFE ——FQE ——F ®FE ——0

0—FQ®E »FQE F'®E

The 0 on top is by hypothesis that F” is flat, and the two zeros on the left are
justified by Lemma 3.3. If F' is flat, then the first vertical map is an injection, and
the snake lemma shows that F is flat. If F is flat, then the middle column is an
injection. Then the two zeros on the left and the commutativity of the left square
show that the map F’ ® E' — F’ ® Eis an injection, so F' is flat. This proves the
first statement.

The proof of the second statement is done by induction, introducing kernels
and cokernels at each step as in dimension shifting, and apply the first statement
at each step. This proves the proposition

To give flexibility in testing for flatness, the next two lemmas are useful, in
relating the notion of flatness to a specific module. Namely, we say that F is
E-flat or flat for E, if for every monomorphism

0-E —>E

the tensored sequence
0-F®E->FQ®E
is also exact.
Lemma 3.5. Assume that F is E-flat. Then F is also flat for every submodule
and every quotient module of E.

Proof. The submodule part is immediate because if E]; < E, ¢ E are
submodules,and F ® E| - F ® E is a monomorphismsois F ® E| - F ® E)
since the composite map with F ® E, —» F ® E is a monomorphism. The only
question lies with a factor module. Suppose we have an exact sequence

0O-N-o>E-M-O.

Let M’ be a submodule of M and E’ its inverse image in E. Then we have a



XVl §3 FLAT MODULES 617

commutative diagram of exact sequences:

0 N > E' M 0
o
0 N > E M 0.

We tensor with F to get the exact and commutative diagram

0 K
FON——F®E S F QM —— 0

0— s FQN——>FQE —>FQM

|

0

where K is the questionable kernel which we want to prove is 0. But the snake
lemma yields the exact sequence

0-K-0

which concludes the proof.

Lemma3.6. Let {E;} be afamily of modules, and suppose that F is flat for each
E;. Then F is flat for their direct sum.

Proof. Let E = (P E, be their direct sum. We have to prove that given any
submodule E’ of E, the sequence

0-FQ®E->F®E=@PFQ®E,

is exact. Note that if an element of F ® E’ becomes 0 when mapped into the
direct sum, then it becomes 0 already in a finite subsum, so without loss of
generality we may assume that the set of indices is finite. Then by induction,
we can assume that the set of indices consists of two elements, so we have two
modules E| and E,, and E = E; @ E,. Let N be a submodule of E. Let N,
= N N E; and let N, be the image of N under the projection on E,. Then
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we have the following commutative and exact diagram:

0 0
L L
N, >N * N, >0
J i !
0 » E, > E > E,

Tensoring with F we get the exact and commutative diagram:

0 0
F®N, »FN »F® N, ——0

|

0— FQ®E —— FRE——FQ®E,

The lower left exactness is due to the fact that £ = E; @ E,. Then the snake
lemma shows that the kernel of the middle vertical map is 0. This proves the
lemma.

The next proposition shows that to test for flatness, it suffices to do so only
for a special class of exact sequences arising from ideals.

Proposition 3.7. F is flat if and only if for every ideal a of R the natural map

a® F — aF

is an isomorphism. In fact, F is flat if and only for every ideal a of R tensoring
the sequence

0-a—->R->R/a-0

with F yields an exact sequence.

Proof. If F is flat, then tensoring with F and using Proposition 2.7 shows
that the natural map is an isomorphism, because aM is the kernel of M — M/aM.
Conversely, assume that this map is an isomorphism for all ideals a. This means
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that F is R-flat. By Lemma 3.6 it follows that F is flat for an arbitrary direct sum
of R with itself, and since any module M is a quotient of such a direct sum,
Lemma 3.5 implies that F is M-flat, thus concluding the proof.

Remark on abstract nonsense. The proofs of Proposition 3.1(i), (ii), (iii),
and Propositions 3.3 through 3.7 are basically rooted in abstract nonsense,
and depend only on arrow theoretic arguments. Specifically, as in Chapter XX,
§8, suppose that we have a bifunctor T on two distinct abelian categories @ and
® such that for each A, the functor B — T(4, B) is right exact and for each B
the functor A — T(A, B) is right exact. Instead of ‘‘flat”” we call an object A
of @ T-exact if B— T(A4, B) is an exact functor; and we call an object L of ®
'T-exact if A — T(A4, L) is exact. Then the references to the base ring and free
modules can be replaced by abstract nonsense conditions as follows.

In the use of L in Lemma 3.3, we need to assume that for every object E of ®
there is a ‘T-exact L and an epimorphism

L->E-D0.

For the analog of Proposition 3.7, we need to assume that there is some
object R in @ for which F is R-exact, that is given an exact sequence

0-a—-R

then 0 —» T(F, a) » T(F, R) is exact; and we also need to assume that R is a
generator in the sense that every object B is the quotient of a direct sum of R with
itself, taken over some family of indices, and T respects direct sums.

The snake lemma is valid in arbitrary abelian categories, either because its
proof is “functorial,” or by using a representation functor to reduce it to the
category of abelian groups. Take your pick.

In particular, we really don’t need to have a commutative ring as base ring,
this was done only for simplicity of language.

We now pass to somewhat different considerations.

Theorem 3.8. Let R be a commutative local ring, and let M be a finite flat

module over R. Then M is free. In fact, if x,, ..., x, € M are elements of M
whose residue classes are a basis of M/mM over R/m, then x,, ..., x, form
a basis of M over R.

Proof. Let R™ — M be the map which sends the unit vectors of R™™ on
Xy, ..., X, respectively, and let N be its kernel. We get an exact sequence

0> N->R" M,
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whence a commutative diagram

MOIN—— MR —mRM

(I

0 >N — R™ > M

in which the rows are exact. Since M is assumed flat, the map h is an injection.
By the snake lemma one gets an exact sequence

0 — coker f — coker g — coker h,
and the arrow on the right is merely
R™/mR®™ — M/mM,

which is an isomorphism by the assumption on x;, ..., x,. It follows that
coker f = 0, whence mN = N, whence N = 0 by Nakayama if R is Noetherian,
so N is finitely generated. If R is not assumed Noetherian, then one has to add
a slight argument as follows in case M is finitely presented.

Lemma 3.9. Assume that M is finitely presented, and let
0O-N->E-M-0

be exact, with E finite free. Then N is finitely generated.
Proof. Let
L ->L,>M->0

be a finite presentation of M, that is an exact sequence with L, L, finite free.
Using the freeness, there exists a commutative diagram

> L, » M
J lid
E > M

0 > N >

=

such that L, — E is surjective. Then the snake lemma gives at once the exact
sequence

0 — coker(L, - N) - 0,

so coker(L, —» N) = 0, whence N is an image of L, and is therefore finitely
generated, thereby proving the lemma, and also completing the proof of Theorem
3.8 when M is finitely presented.
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We still have not proved Theorem 3.8 in the fully general case. For this we
use Matsumura’s proof (see his Commutative Algebra, Chapter 2), based on the
following lemma.

Lemma 3.10. Assume that M is flat over R. Let a; € A, x; € M fori = 1,
..., n, and suppose that we have the relation

Then there exists an integer s and elements b;je A and y;e M (j = 1,...,5)
such that

Z a;bj=0 forallj and x; = Z bijy; foralli.
t J
Proof. We consider the exact sequence

0—-K->R"”->R

where the map R™ — R is given by
(bl’ cey bn)H zaibh
i=1
and K 1s its kernel. Since M is flat it follows that

K@M M» X

is exact, where f,, is given by

n
Gz = Y agz;.
i=1

Therefore there exist elements ;€ K and y; € M such that

Genes X)) = 3 By vy
j=1
Write f; = (by;, ..., b,;) with b;;e R. This proves the lemma.

We may now apply the lemma to prove the theorem in exactly the same way
we proved that a finite projective module over a local ring is free in Chapter X,
Theorem 4.4, by induction. This concludes the proof.

Remark. In the applications I know of, the base ring is Noetherian, and so
one gets away with the very simple proof given at first. I did not want to obstruct
the simplicity of this proof, and that is the reason I gave the additional tech-
nicalities in increasing order of generality.
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Applications of homology. Weend this section by pointing out a connection
between the tensor product and the homological considerations of Chapter XX,
§8 for those readers who want to pursue this trend of thoughts. The tensor product
is a bifunctor to which we can apply the considerations of Chapter XX, §8. Let
M, N be modules. Let

o> E->E_(->E,->M-0

be a free or projective resolution of M, i.e. an exact sequence where E; is free or
projective for all i = 0. We write this sequence as

Ey—-M-0.
Then by definition,
Tor(M, N) = i-th homology of the complex E ® N, that is of
o> EQN-E_®N->--->E,®N-0.

This homology is determined up to a unique isomorphism. Ileave to the reader
to pick whatever convention is agreeable to fix one resolution to determine a
fixed representation of Tor(M, N), to which all others are isomorphic by a
unique isomorphism.

Since we have a bifunctorial isomorphism M ® N & N ® M, we also get a
bifunctorial isomorphism

Tor{M, N) ~ Tor,(N, M)

for all i. See Propositions 8.2 and 8.2" of Chapter XX.

Following general principles, we say that M has Tor-dimension = d if
Tor;(M, N) = 0 for all { > d and all N. From Chapter XX, §8 we get the follow-
ing result, which merely replaces T-exact by flat.

Theorem 3.11. The following three conditions are equivalent concerning a
module M.

(1) M is flat.
(ii) Tor,(M, N) =0 for all N.

(iii) Tor{M,N) =0 for all i = 1 and all N, in other words, M has Tor-
dimension Q.

Remark. Readers willing to use this characterization can replace some of
the preceding proofs from 3.3 to 3.6 by a Tor-dimension argument, which is
more formal, or at least formal in a different way, and may seem more rapid.
The siake lemma was used ad hoc in each case to prove the desired result. The
general homology theory simply replaces this use by the corresponding formal
homological step, once the general theory of the derived functor has been carried
out.
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§4. EXTENSION OF THE BASE

Let R be a commutative ring and let E be a R-module. We specify R since
we are going to work with several rings in a moment. Let R — R’ be a homo-
morphism of commutative rings, so that R” isan R-algebra, and may be viewed as
an R-module also. We have a 3-multilinear map

R xR xE-R ®E
defined by the rule
(a, b, x) > ab ® x.
This induces therefore a R-linear map
R®R ®E)y-R ®E

and hence a R-bilinear map R’ x (R’ ® E) - R’ ® E. It is immediately verified
that our last map makes R' ® E into a R’-module, which we shall call the
extension of E over R, and denote by E;.. We also say that E. is obtained by
extension of the base ring from R to R’

Example 1. Let a be an ideal of R and let R — R/a be the canonical homo-
morphism. Then the extension of E to R/a is also called the reduction of E
modulo a. This happens often over the integers, when we reduce modulo a prime
p (i.e. modulo the prime ideal (p)).

Example 2. Let R be a field and R’ an extension field. Then E is a vector
space over R, and Ey. is a vector space over R'. In terms of a basis, we see that
our extension gives what was alluded to in the preceding chapter. This example
will be expanded in the exercises.

We draw the same diagrams as in field theory:

Ex
P \R,
\R —

to visualize an extension of the base. From Proposition 2.3, we conclude:

Proposition 4.1. Let E be a free module over R, with basis {v;};.;. Let
v; = 1 ®@v;. Then Ey. is a free module over R', with basis {v}};.;.

We had already used a special case of this proposition when we observed that
the dimension of a free module is defined, i.e. that two bases have the same
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cardinality. Indeed, in that case, we reduced modulo a maximal ideal of R to
reduce the question to a vector space over a field.

When we start changing rings, it is desirable to indicate R in the notation
for the tensor product. Thus we write

Er =R ®E=R ®gE.

Then we have transitivity of the extension of the base,namely,if R - R’ - R"isa
succession of homomorphisms of commutative rings, then we have an iso-
morphism

R"®rE~ R @r (R ®rE)

and this isomorphism is one of R”-modules. The proof is trivial and will be left
to the reader.

If E has a multiplicative structure, we can extend the base also for this
multiplication. Let R — A4 be a ring-homomorphism such that every element in
the image of R in A commutes with every element in A (i.e. an R-algebra). Let
R — R’ be a homomorphism of commutative rings. We have a 4-multilinear
map

RxAxR xA-R ®A
defined by
(a, x, b, y)—ab ® xy.
We get an induced R-linear map
R A®R ®A->R ® A
and hence an induced R-bilinear map
(R®A) x (R® A)—» R ® A.

It is trivially verified that the law of composition on R’ ® A we have just
defined is associative. There is a unit element in R’ ® A, namely, 1 ® 1. We
have a ring-homomorphism of R" into R’ ® A, given by a+—a ® 1. In this way
one sees at once that R” ® 4 = A is an R’-algebra. We note that the map

x—1®x

is a ring-homomorphism of 4 into R’ ® A, and that we get a commutative
diagram of ring homomorphisms,

A /R:@\A; Ag
~,

R
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For the record, we give some routine tests for flatness in the context of base
extension.

Proposition 4.2. Let R — A be an R-algebra, and assume A commutative.

(i) Base change. If F is a flat R-module, then A @ F is a flat A-module.

(ii) Transitivity. If 4 is a flat commutative R-algebra and M is a flat A-module,
then M is flat as R-module.

The proofs are immediate, and will be left to the reader.

§6. SOME FUNCTORIAL ISOMORPHISMS

We recall an abstract definition. Let U, B be two categories. The functors
of A into B (say covariant, and in one variable) can be viewed as the
objects of a category, whose morphisms are defined as follows. If L, M are two
such functors, a morphism H:L — M is a rule which to each object X of A
associates a morphism Hy: L(X) - M(X) in B, such that for any morphism
f:X — Yin U, the following diagram is commutative:

L(X) =2 M(X)

L) M(f)

L(Y) = M(Y)
We can therefore speak of isomorphisms of functors. We shall see examples of
these in the theory of tensor products below. In our applications, our categories

are additive, that is, the set of morphisms is an additive group, and the composi-
tion law is Z-bilinear. In that case, a functor L is called additive if

L(f +9) = L(f) + L(g).

We let R be a commutative ring, and we shall consider additive functors from
the category of R-modules into itself. For instance we may view the dual
module as a functor,

E+ EY = L(E, R) = Homg(E, R).
Similarly, we have a functor in two variables,
(E, F)> L(E, F) = Homg(E, F),

contravariant in the first, covariant in the second, and bi-additive.
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We shall give several examples of functorial isomorphisms connected with
the tensor product, and for this it is most convenient to state a general theorem,
giving us a criterion when a morphism of functors is in fact an isomorphism.

Proposition 5.1. Let L, M be two functors (both covariant or both contra-
variant) from the category of R-modules into itself. Assume that both functors
are additive. Let H: L — M be a morphism of functors. If Hg: L(E) - M(E)
is an isomorphism for every 1-dimensional free module E over R, then Hy is an
isomorphism for every finite-dimensional free module over R.

Proof. We begin with a lemma.

Lemma 5.2. Let E and E; (i = 1,...,m) be modules over a ring. Let
¢; E; > E and ;- E — E; be homomorphisms having the following properties:

Yio@; = id, ‘pio‘Pj”—'O if i#]

Then the map
x'—*(‘ﬂl% rery l//mx)

m
is an isomorphism of E onto the direct product |] E;, and the map
i=1

(x1,~--’xm)'_’(P1x1 + ot OpXy,

is an isomorphism.of the product onto E. Conversely, if E is equal to the direct
sum of submodules E; (i = 1, ..., m), if we let ; be the inclusion of E; in E,
and @; the projection of E on E;, then these maps satisfy the above-mentioned
properties.

Proof. The proof is routine, and is essentially the same as that of Proposition
3.1 of Chapter III. We shall leave it as an exercise to the reader.

We observe that the families {¢;} and {i;} satisfying the properties of the
lemma behave functorially: If T is an additive contravariant functor, say, then
thefamilies {T(y/;)} and { T(¢,)} also satisfy the properties of the lemma. Similarly
if T is a covariant functor.

To apply the lemma, we take the modules E; to be the 1-dimensional
components occurring in a decomposition of E in terms of a basis. Let us assume
for instance that L, M are both covariant. We have for each module E a com-
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mutative diagram
L(E) —— M(E)
Lig) Mg)
L(E) —5— M(E)

and a similar diagram replacing ¢; by ;, reversing the two vertical arrows.
Hence we get a direct sum decomposition of L(E) in terms of L(y;) and L(g,),
and similarly for M(E), in terms of M(y;) and M(¢;). By hypothesis, H, is an
isomorphism. It then follows trivially that H is an isomorphism. For instance,
to prove injectivity, we write an element v € L(E) in the form

v= Z L(gv;,
with v;€ L(E;). If Hzv = 0, then

0= HeL(p)v; = 3, M(@)HE,v;,

and since the maps M(¢,) (i = 1,..., m) give a direct sum decomposition of
M(E), we conclude that Hy v; = 0 for all i, whence v; = 0, and v = 0. The
surjectivity is equally trivial.

When dealing with a functor of several variables, additive in each variable,
one can keep all but one of the variables fixed, and then apply the proposition.
We shall do this in the following corollaries.

Corollary 5.3. Let E', E, F', F be free and finite dimensional over R. Then we
have a functorial isomorphism

L(E,E)® L(F,F) — L(E @ F,E® F)

such that

f®g—T(f, 9.

Proof. Keep E, F', F fixed, and view L(E’, E) ® L(F’, F) as a functor in the
variable E’. Similarly, view

L(E®F,EQF)

asafunctorin E’. Themap ' ® g+ T(f, g)isfunctorial, and thus by the lemma,
it suffices to prove that it yields an isomorphism when E’ has dimension 1.
Assume now that this is the case; fix E' of dimension 1, and view the two
expressions in the corollary as functors of the variable E. Applying the lemma



628 THE TENSOR PRODUCT XVi, §5

again, it suffices to prove that our arrow is an isomorphism when E has di-
mension 1. Similarly, we may assume that F, F’ have dimension 1. In that
case the verification that the arrow is an isomorphism is a triviality, as desired.

Corollary 5.4. Let E, F be free and finite dimensional. Then we have a
natural isomorphism

Endg(E) ® Endg(F) — Endg(E ® F).

Proof. Special case of Corollary 5.3.

Note that Corollary 5.4 had already been proved before, and that we
mention it here only to see how it fits with the present point of view.

Corollary 5.5. Let E, F be free finite dimensional over R. There is a func-
torial isomorphism

EV®F—> L(E,F)
given for .€ EY and y € F by the map
AQy— Ay
where A; , is such that for all x € E, we have A, ,(x) = A(x)y.

The inverse isomorphism of Corollary 5.5 can be described as follows.
Let {v1,...,v,} be a basis of E, and let {v],...,v,} be the dual basis. If
A € L(E| F), then the element

iv{ RA(v;)e EYQF
i=1

maps to 4. In particular, if E = F, then the element mapping to the identity idg
is called the Casimir element

- !
Zvi ® Ui,
i=1

independent of the choice of basis. Cf. Exercise 14.

To prove Corollary 5.5, justify that there is a well-defined homomorphism
of EY ® F to L(E,F), by the formula written down. Verify that this homo-
morphism is both injective and surjective. We leave the details as exercises.

Differential geometers are very fond of the isomorphism

L(E,E)y—> E'QE,

and often use EV ® E when they think geometrically of L(E, E), thereby em-
phasizing an unnecessary dualization, and an irrelevant formalism, when it is
easier to deal directly with L(E, E). In differential geometry, one applies
various functors L to the tangent space at a point on a manifold, and elements
of the spaces thus obtained are called tensors (of type L).
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Corollary 5.6. Let E, F be free and finite dimensional over R. There is a
functorial isomorphism

EYQF' > (EQ®F)".
given for A€ E¥ and p € F by the map
A@u— A,
where A is such that, for all x e E and y e F,
Alx®y) = A(x)u(y)
Proof. As before.

Finally, we leave the following results as an exercise.

Proposition 5.7. Let E be free and finite dimensional over R. The trace
function on L(E, E) is equal to the composite of the two maps

L(E,E)—> E' Q@E—>R,

where the first map is the inverse of the isomorphism described in Corollary 5.5,
and the second map is induced by the bilinear map

(4, x) — A(x).

Of course, it is precisely in a situation involving the trace that the iso-
morphism of Corollary 5.5 becomes important, and that the finite dimen-
sionality of E is used. In many applications, this finite dimensionality plays
no role, and it is better to deal with L(E, E) directly.

§6. TENSOR PRODUCT OF ALGEBRAS

In this section, we again let R be a commutative ring. By an R-algebra we
mean a ring homomorphism R — A into a ring A such that the image of R is
contained in the center of A.

Let A, B be R-algebras. We shall make A ® B into an R-algebra. Given
(a, b) € A X B, we have an R-bilinear map

M,,: A X B— A ® B such that M, ,(a’, b') = aa’ ® bb'".

Hence M,, induces an R-linear map m,,: A® B — A ® B such that
mg 4(a’, b') = aa’ @ bb'. But m, , depends bilinearly on a and b, so we obtain
finally a unique R-bilinear map

AQBXAQ®B—>AQ®B
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such that (a ® b)(a' ® b') = aa’ @ bb’. This map is obviously associative, and
we have a natural ring homomorphism

R—>AQ®B givenby ¢~ 18c=c®1.
Thus A @ B is an R-algebra, called the ordinary tensor product.

Application: commutative rings

We shall now see the implication of the above for commutative rings.

Proposition 6.1.  Finite coproducts exist in the category of commutative
rings, and in the category of commutative algebras over a commutative ring.
If R — A and R — B are two homomorphisms of commutative rings, then their
coproduct over R is the homomorphism R — A & B given by

a—a®1=1®a.

Proof. We shall limit our proof to the case of the coproduct of two ring
homomorphisms R — A and R — B. One can use induction.

Let A, B be commutative rings, and assume given ring-homomorphisms into
a commutative ring C,

¢:A—->C and ¢:B- C.
Then we can define a Z-bilinear map
AxB-C
by (x, y) — @(x){(y). From this we get a unique additive homomorphism
A®B-C

such that x ® y— @(x)y(y). We have seen above that we can define a ring
structure on A ® B, such that

(a® b)(c ®d) = ac® bd.

It is then clear that our map A ® B — Cis a ring-homomorphism. We also have
two ring-homomorphisms

AL A®B and B5A®B
given by
x—x®1 and y—1®y.

The universal property of the tensor product shows that (A ® B, f,g) is a
coproduct of our rings A and B.
If A, B, C are R-algebras, and if ¢, Y make the following diagram com-
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mutative,
C
2N
A \ B
R/

then A ® B is also an R-algebra (it is in fact an algebra over R, or 4, or B, de-
pending on what one wants to use), and the map 4 ® B — C obtained above
gives a homomorphism of R-algebras.

A commutative ring can always be viewed as a Z-algebra (1.¢. as an algebra
over the integers). Thus one sees the coproduct of commutative rings as a
special case of the coproduct of R-algebras.

Graded Algebras. Let G be a commutative monoid, written additively. By
a G-graded ring, we shall mean a ring A, which as an additive group can be
expressed as a direct sum.

A=PA4,,
reG
and such that the ring multiplication maps 4, x 4, into 4,,, for all r, s€ G.

In particular, we see that A is a subring.

The elements of A, are called the homogeneous elements of degree r.

We shall construct several examples of graded rings, according to the
following pattern. Suppose given for each r € G an abelian group A, (written
additively), and for each pair r, s € G amap A, X A, — A,,,. Assume that A,
is a commutative ring, and that composition under these maps is associative and

Ap-bilinear. Then the direct sum A = @ A, is aring: We can define multiplica-
reG
tion in the obvious way, namely

(Z5)(z2)-2 (2 x)

The above product is called the ordinary product. However, there is another
way. Suppose the grading is in Z or Z/2Z. We define the super product of
x€A,andy € A to be (—1)"xy, where xy is the given product. It is easily veri-
fied that this product is associative, and extends to what is called the super
product A ® A — A associated with the bilinear maps. If R is a commutative
ring such that A is a graded R-algebra, i.e. RA, C A, for all r (in addition to the
condition that A is a graded ring), then with the super product, A is also an
R-algebra, which will be denoted by A,, and will be called the super algebra
associated with A.
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Example. Inthe next section, we shall meet the tensor algebra T(E), which
will be graded as the direct sum of 77(E), and so we get the associated super
tensor algebra T, (F) according to the above recipe.

Similarly, let A, B be graded algebras (graded by the natural numbers as
above). We define their super tensor product

A ®wu B

to be the ordinary tensor product as graded module, but with the super product
(a®b)a' ®b') = (—1)deedeealgy’ @ pb'

if b, a' are homogeneous elements of B and A respectively. It is routinely verified
that A &, B is then a ring which is also a graded algebra. Except for the sign,
the product is the same as the ordinary one, butitis necessary to verify associativity
explicitly. Suppose a' € A;, b € Bj, a” € A;, and b’ € B,. Then the reader will
find at once that the sign which comes out by computing

(@ @ b)a' Qwu b')a" @ b")

in two ways turns out to be the same, namely (— 1)*#**"_ Since bilinearity is
trivially satisfied, it follows that A X),, B is indeed an algebra.

The super product in many ways is more natural than what we called the
ordinary product. For instance, it is the natural product of cohomology in topol-
ogy. Cf. Greenberg-Harper, Algebraic Topology, Chapter 29. For a similar con-
struction with Z/2Z-grading, see Chapter XIX, §4.

§7. THE TENSOR ALGEBRA OF A MODULE

Let R be a commutative ring as before, and let E be a module (i.e. an
R-module). For each integer r = 0, we let

T(E)=QE and T°E)=R
i=1
Thus T"(E) = E® - - - ® E (tensor product taken r times). Then T” is a functor,

whose effect on linear maps is given as follows. If f : E — F is a linear map, then

"N =T(.... 1)

in the sense of §1.
From the associativity of the tensor product, we obtain a bilinear map

T"(E) x T%E) — T"*%(E),
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which is associative. Consequently, by means of this bilinear map, we can define
a ring structure on the direct sum

T(E) = @ TE),

and in fact an algebra structure (mapping R on T%E) = R). We shall call T(E)
the tensor algebra of E, over R. It is in general not commutative. If x, y € T(E),
we shall again write x ® y for the ring operation in T(E).

Let f': E — F be a linear map. Then f induces a linear map

T(f): T(E) > T'(F)

for each r = 0, and in this way induces a map which we shall denote by T'(f) on
T(E). (There can be no ambiguity with the map of §1, which should now be
written T'(f), and is in fact equal to f since T'(E) = E.) Itis clear that T(f)is
the unique linear map such that for x,, ..., x, € E we have

TN ®®x) = fx)® - ® f(x).

Indeed, the elements of T!(E) = E are algebra-generators of T(E) over R. We
see that T( f) is an algebra-homomorphism. Thus T may be viewed as a functor
from the category of modules to the category of graded algebras, T(f) being a
homomorphism of degree 0.

When E is free and finite dimensional over R, we can determine the structure
of T(E) completely, using Proposition 2.3. Let P be an algebra over k. We shall
say that P is a non-commutative polynomial algebra if there exist elements
ty, ..., L, € P such that the elements

My(t) = t;,---t;

s

with 1 £ i, £ n form a basis of P over R. We may call these elements non-
commutative monomials in (t). As usual, by convention, when r = 0, the
corresponding monomial is the unit element of P. Wesee thatt,, ..., t,generate
P asan algebra over k, and that P is in fact a graded algebra, where P, consists of
linear combinations of monomials t;, - - - t; with coefficients in R. Itis natural to
say that ¢,, ..., t, are independent non-commutative variables over R.

Proposition 7.1.  Let E be free of dimension n over R. Then T(E) is isomorphic
to the non-commutative polynomial algebra on n variables over R. In other
words, if {v,...,v,} is a basis of E over R, then the elements

Myw) =0, ® --- ®uv;,, 1=i,<n

form a basis of T'(E), and every element of T(E) has a unique expression as a
finite sum

Y agM @), as€ R
)
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with almost all a, equal to 0.
Proof. This follows at once from Proposition 2.3.

The tensor product of linear maps will now be interpreted in the context of
the tensor algebra.

For convenience, we shall denote the module of endomorphisms Endg(E) by
L(E) for the rest of this section.

We form the direct sum
(LT)(E) = @ L(T'(E)),
r=0

which we shall also write LT(E) for simplicity. (Of course, LT(E)is not equal to
EndR(T(E)), so we must view LT as a single symbol.) We shall see that LT is a
functor from modules to graded algebras, by defining a suitable multiplication
on LT(E). Let f € L(T'(E)), g € L(T*(E)), he L(T™(E)). We define the product
fge L(T""*(E)) to be T(f, g), in the notation of §1, in other words to be the
unique linear map whose effect on an element x ® y with xe T"(E) and
ye TXE)is

x® y— f(x) ® g(y).

In view of the associativity of the tensor product, we obtain at once the as-
sociativity (fg)h = f(gh), and we also see that our product is bilinear. Hence
LT(E) s a k-algebra.

We have an algebra-homomorphism
T(L(E)) - LT(E)
given in each dimension r by the linear map
H® @ =Ty n )= fi fr
We specify here that the tensor product on the left is taken in
L(E)® -+ ® L(E).

Wealso note that the homomorphism is in general neither surjective nor injective.
When E is free finite dimensional over R, the homomorphism turns out to be
both, and thus we have a clear picture of LT(E) as a non-commutative poly-
nomial algebra, generated by L(E). Namely, from Proposition 2.5, we obtain:

Proposition 7.2. Let E be free, finite dimensional over R. Then we have an
algebra-isomorphism

T(L(E)) = T(Endg(E)) » LT(E) = é Endg(T"(E))
r=0
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given by
f®g—T(f,9)

Proof. By Proposition 2.5, we have a linear isomorphism in each dimen-
sion, and it is clear that the map preserves multiplication.

In particular, we see that LT(E) 1s a noncommutative polynomial algebra.

§8. SYMMETRIC PRODUCTS

Let €, denote the symmetric group on n letters, say operating on the integers
(1,...,n). An r-multilinear map

fEY S F

is said to be symmetric if f(x;,...,x,) = f(X,q)> ..., Xq) forall 6 € S,.
In T'(E), we let b, be the submodule generated by all elements of type

X1 Q@ X, = Xo1) ® -+ @ X
for all x;e E and 6 € S,. We define the factor module
S(E) = T"(E)/®b,,

and let
S(E) = P S'(E)
r=0
be the direct sum. It is immediately obvious that the direct sum
b= @b,
r=0
is an ideal in T(E), and hence that S(E) is a graded R-algebra, which is called the

symmetric algebra of E.
Furthermore, the canonical map

E® - S'(E)

obtained by composing the maps
E" > T'(E) - T'(E)/b, = S'(E)

is universal for r-multilinear symmetric maps.
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We observe that S is a functor, from the category of modules to the category
of graded R-algebras. The image of (x,, ..., x,) under the canonical map

E" - S"(E)
will be denoted simply by x, - - - x,.

Proposition 8.1. Let E be free of dimension n over R. Let {v,,...,v,} be a
basis of E over k. Viewed as elements of S'(E) in S(E), these basis elements are
algebraically independent over R, and S(E) is therefore isomorphic to the
polynomial algebra in n variables over R.

Proof. Lett,,...,t, be algebraically independent variables over R, and
form the polynomial algebra R[t,,...,t,]. Let P, be the R-module of homo-
geneous polynomials of degree r. We define a map of E”' — P, as follows. If
wy, ..., w, are elements of E which can be written

then our map is given by
(Wla ceey Wr)H(alltl + ot alntn) e (arltl + ot arntn)'

It is obvious that this map is multilinear and symmetric. Hence it factors
through a linear map of S'(E) into P,:

EQ —— S(E)

P

r

From the commutativity of our diagram, it is clear that the element v;, - - - v;_in
S"(E) maps on t; - - - t; in P, for each r-tuple of integers (i) = (iy, ..., i,). Since
the monomials M ;(¢) of degree r are linearly independent over k, it follows that
the monomials M ;(v) in S'(E) are also linearly independent over R, and that
our map S"(E) — P, is an isomorphism. One verifies at once that the multiplica-
tion in S(E) corresponds to the multiplication of polynomials in R[¢], and thus
that the map of S(E) into the polynomial algebra described as above for each
component S"(E) induces an algebra-isomorphism of S(E) onto R[], as desired.

Proposition 8.2. Let E = E' ® E" be a direct sum of finite free modules.
Then there is a natural isomorphism

SE®@E)~ P S°E' ® S°E".

ptq=n
In fact, this is but the n-part of a graded isomorphism

S(E' ® E") ~ SE' ® SE’.
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Proof. The isomorphism comes from the following maps. The inclusions
of E" and E” into their direct sum give rise to the functorial maps

SE' ® SE” — SE,

and the claim is that this is a graded isomorphism. Note that SE’ and SE" are
commutative rings, and so their tensor product is just the tensor product of
commutative rings discussed in §6. The reader can either give a functorial map
backward to prove the desired isomorphism, or more concretely, SE’ is the
polynomial ring on a finite family of variables, SE” is the polynomial ring in
another family of variables, and their tensor product is just the polynomial ring
in the two families of variables. The matter is easy no matter what, and the
formal proof is left to the reader.

EXERCISES

1. Let k be a field and k() a finite extension. Let f(X) = Irr(x, k, X), and suppose that fis
separable. Let k' be any extension of k. Show that k(«) ® k' is a direct sum of fields.
If k' is algebraically closed, show that these fields correspond to the embeddings of
k(x) in k'.

2. Let k be a field, f(X) an irreducible polynomial over k, and o a root of f. Show that
k(x) ® k' is isomorphic, as a k"-algebra, to k'[X]/(f(X)).

3. Let E be a finite extension of a field k. Show that E is separabie over k if and only if
E ®, L has no nilpotent elements for all extensions L of k, and also when L = k%

4. Let ¢ : A — B be a commutative ring homomorphism. Let E be an A-module and F
a B-module. Let F, be the A-module obtained from F via the operation of A on F
through ¢, that is for y € F, and a € A this operation is given by

(a, y) — o(a)y.
Show that there is a natural isomorphism
Homy(B ® 4 E, F)  Hom(E, F ).

5. The norm. Let B be a commutative algebra over the commutative ring R and assume
that B is free of rank r. Let A be any commutative R-algebra. Then A ® B is both
an A-algebra and a B-algebra. We view A ® B as an A-algebra, which is also free
of rank r. If {e,, ..., e,} is a basis of B over R, then

1,®e;,...,1,®e,
is a basis of A ® B over A. We may then define the norm
N=Nypp4 AQB— 4

as the unique map which coincides with the determinant of the regular representation.
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In other words, if b € B and by denotes mulitiplication by b, then
Np r(b) = det(bp);

and similarly after extension of the base. Prove:
(a) Let ¢: 4 —» C be a homomorphism of R-algebras. Then the following diagram
is commutative:

AQB-22%,Cc®B
|
N lN
A — C
@

(b) Let x, ye A® B. Then N(x ®zy) = N(x) ® N(y). [Hint: Use the com-
mutativity relations e;e; = e;e; and the associativity. ]

A little flatness

6. Let M, N be flat. Show that M ® N is flat.

7. Let F be a flat R-module, and let a € R be an element which is not a zero-divisor. Show
that if ax = 0 for some x € F then x = 0.

8. Prove Proposition 3.2.

Faithfully flat

9. We continue to assume that rings are commutative. Let M be an 4-module. We say
that M is faithfully flat if M is flat, and if the functor

Ty:Er>MQ,E.

is faithful, that is E # 0 implies M ® 4, E # 0. Prove that the following conditions are
equivalent.
(1) M is faithfully flat.

(i) M is flat, and if u: F — E is a homomorphism of A-modules, u # 0, then
Ty () M ®,F > M®, Eis also #0.
(iii) M is flat, and for all maximal ideals m of 4, we have mM # M.

(iv) A sequence of A-modules N’ - N — N” is exact if and only if the sequence
tensored with M is exact.
10. (a) Let A — B be a ring-homomorphism. If M is faithfully flat over A, then B® 4 M
is faithfully flat over B.
(b) Let M be faithfully flat over B. Then M viewed as A-module via the homomorphism
A — Bis faithfully flat over 4 if B is faithfully flat over A.

11. Let P, M, E be modules over the commutative ring A. If P is finitely generated (resp.
finitely presented) and E is flat, show that the natural homomorphism

Hom (P, M) ® , E - Hom (P, M ® , E)

is a monomorphism (resp. an isomorphism).
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[Hint: Let F, —» Fy— P — 0 be a finite presentation, say. Consider the diagram

0 —— Hom (P, M) ®,E — Hom,(F,,M) ® , E —— Hom (F,, M) ®  E

0 —— Hom (P, M ® 4 E) —— Hom (F,, M ® 4 E) — Hom (F;, M ® ,E)].

Tensor products and direct limits

12. Show that the tensor product commutes with direct limits. In other words, if {E;} is a
directed family of modules, and M is any module, then there is a natural isomorphism

M(Ei QM) ~ (1_121, E)®4M.

13. (D. Lazard) Let E be a module over a commutative ring A. Tensor products are all
taken over that ring. Show that the following conditions are equivalent:
(i) There exists a direct family {F;} of free modules of finite type such that
E ~ limF,.

—

(i) E is flat.

(iii) For every finitely presented module P the natural homomorphism
Hom (P, A) ® , E - Hom (P, E)

is surjective.

(iv) For every finitely presented module P and homomorphism f: P — E there
exists a free module F, finitely generated, and homomorphisms

g:P>F and h:F—-E
such that f = hog.

Remark. The point of Lazard’s theorem lies in the first two conditions: E is flat
if and only if E is a direct limit of free modules of finite type.

[Hint: Since the tensor product commutes with direct limits, that (i) implies (ii)
comes from the preceding exercise and the definition of flat.

To show that (ii) implies (iii), use Exercise 11.

To show that (iii) implies (iv) is easy from the hypothesis.

To show that (iv) implies (i), use the fact that a module is a direct limit of finitely
presented modules (an exercise in Chapter III), and (iv) to get the free modules
instead. For complete details, see for instance Bourbaki, Algébre, Chapter X, §l,
Theorem 1, p. 14.]

The Casimir element

14. Let k be a commutative field and let E be a vector space over k, of finite dimension
n. Let B be a nondegenerate symmetric bilinear form on E, inducing an iso-
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morphism E — EV of E with its dual space. Let {v;,...,v,} be a basis of E. The B-
dual basis {v{,...,v,} consists of the elements of £ such that B(v;, v]) = dy.

(a) Show that the element > v; ® v/ in E® E is independent of the choice of
basis. We call this element the Casimir element (see below).

(b) In the symmetric algebra S(E), let Qg = > v;v;. Show that Qp is indepen-
dent of the choice of basis. We call Qp the Casimir polynomial. It depends on
B, of course.

(c) More generally, let D be an (associative) algebra over k, let 2: E — D be an
injective linear map of E into D. Show that the element > 2(v;)2(v)) =
wp, 9 is independent of the choice of basis. We call it the Casimir element in
D, determined by 2 and B.

Remark. The terminology of the Casimir element is determined by the classical
case, when G is a Lie group, E = g = Lie(G) is the Lie algebra of G (tangent space at the
origin with the Lie algebra product determined by the Lie derivative), and 2(v) is the
differential operator associated with v (Lie derivative in the direction of v). The Casimir
element is then a partial differential operator in the algebra of all differential operators
on G. Cf. basic books on manifolds and Lie theory, for instance [JoL 01], Chapter II, §1
and Chapter VII, §2.

15. Let E = sl,(k) = subspace of Mat, (k) consisting of matrices with trace 0. Let B be
the bilinear form defined by B(X, Y) = tr(XY). Let G = SL,(k). Prove:

(a) B is c(G)-invariant, where c(g) is conjugation by an element g € G.

(b) B is invariant under the transpose (X, Y) — ('X,'Y).

(c) Let k = R. Then B is positive definite on the symmetric matrices and nega-
tive definite on the skew-symmetric matrices.

(d) Suppose G is given with an action on the algebra D of Exercise 14, and that
the linear map 2: E — D is G-linear. Show that the Casimir element is G-
invariant (for the conjugation action on S(E), and the given action on D).
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Semisimplicity

In many applications, a module decomposes as a direct sum of simple sub-
modules, and then one can develop a fairly precise structure theory, both under
general assumptions, and particular applications. This chapter is devoted to
those results which can be proved in general. In the next chapter, we consider
those additional results which can be proved in a classical and important special
case.

I have more or less followed Bourbaki in the proof of Jacobson’s density
theorem.

§1. MATRICES AND LINEAR MAPS OVER
NON-COMMUTATIVE RINGS

In Chapter XIII, we considered exclusively matrices over commutative
rings. For our present purposes, it is necessary to consider a more general
situation.

Let K be a ring. We define a matrix (¢,;) with coefficients in K just as we
did for commutative rings. The product of matrices is defined by the same
formula. Then we again have associativity and distributivity, whenever the
size of the matrices involved in the operations makes the operations defined.
In particular, the square n x n matrices over K form a ring, again denoted by
Mat,(K). We have a ring-homomorphism

K — Mat,(K)
on the diagonal.
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By a division ring we shall mean a ring with 1 # 0, and such that every
non-zero element has a multiplicative inverse.
If K is a division ring, then every non-zero K-module has a basis, and the

cardinalities of two bases are equal. The proofis the same as in the commutative
case; we never needed commutativity in the arguments. This cardinality is

again called the dimension of the module over K, and a module over a division
ring is called a vector space.

We can associate a matrix with linear maps, depending on the choice of a
finite basis, just as in the commutative case. However, we shall consider a
somewhat different situation which we want to apply to semisimple modules.

Let R be a ring, and let

E=E,® - ®E, F=F® ®F,

be R-modules, expressed as direct sums of R-submodules. We wish to describe
the most general R-homomorphism of E into F.
Suppose first F = F, has one component. Let

o E,® - -®E, - F

be a homomorphism. Let ¢;: E; » F be the restriction of ¢ to the factor E;.
Every element x € E has a unique expression x = x; + -+ + Xx,, with x;€ E;.
We may therefore associate with x the column vector X = ‘(xy,..., X,), whose
components are in E, ..., E, respectively. We-can associate with ¢ the row
vector (@4, ..., @,), @; € Homg(E;, F), and the effect of ¢ on the element x of
E is described by matrix multiplication, of the row vector times the column
vector.
More generally, consider a homomorphism

»E,®  @E-F & @F,

Letn,:F, ®---@ F,, — F, be the projection on the i-th factor. Then we can
apply our previous remarks to 7; o ¢, for each i. In this way, we see that there
exist unique elements ¢;; € Homg(E;, F;), such that ¢ has a matrix representa-
tion

P11 Pia
M(p) = :
Pm1 ° Pmn

whose effect on an element x is given by matrix multiplication, namely
P11 P\ (X1

Pm1 " P/ \Xn
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Conversely, given a matrix (¢;;) with ¢,; € Homg(E;, F;), we can define an
element of Homg(E, F) by means of this matrix. We have an additive group-
isomorphism between Homg(E, F) and this group of matrices.

In particular, let E be a fixed R-module, and let K = Endg(E). Then we have
a ring-isomorphism

Endg(E™) - Mat,(K)
which to each @ € Endgx(E™) associates the matrix

P11 0t Qan

Ony " Py

determined as before, and operating on the left on column vectors of E™, with
components in E.

Remark. Let E be a 1-dimensional vector space over a division ring D,
and let {v} be a basis. For each a € D, there exists a unique D-linear map
fa: E — E such that f,(v) = av. Then we have the rule

ﬁ:fb = fba'

Thus when we associate a matrix with a linear map, depending on a basis, the
multiplication gets twisted. Nevertheless, the statement we just made preceding
this remark is correct!! The point is that we took the ¢;; in Endg(E), and not
in D, in the special case that R = D. Thus K is not isomorphic to D (in the
non-commutative case), but anti-isomorphic. This is the only point of difference
of the formal elementary theory of linear maps in the commutative or non-
commutative case.

We recall that an R-module E is said to be simple if it is # 0 and if it has no
submodule other than 0 or E.

Proposition 1.1. Schur’s Lemma. Let E, F be simple R-modules. Every
non-zero homomorphism of E into F is an isomorphism. The ring Endg(E) is
a division ring.

Proof. Letf:E — F be a non-zero homomorphism. Its image and kernel
are submodules, hence Ker f = 0 and Im f = F. Hence fis an isomorphism.
If E = F, then f has an inverse, as desired.

The next proposition describes completely the ring of endomorphisms of a
direct sum of simple modules.

Proposition1.2. Let E=E @®---@® E™ be a direct sum of simple
modules, the E; being non-isomorphic, and each E; being repeated n; times in
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the sum. Then, up to a permutation, E, ..., E, are uniquely determined up
to isomorphisms, and the multiplicities n,, ..., n, are uniquely determined.
The ring Endg(E) is isomorphic to a ring of matrices, of type

M, e 0
oM,
0 e M,

where M; is an n; x n; matrix over Endg(E;). (The isomorphism is the one
with respect to our direct sum decomposition.)

Proof. The last statement follows from our previous considerations, taking
into account Proposition 1.1.

Suppose now that we have two R-modules, with direct sum decompositions
into simple submodules, and an isomorphism

E(l'”) @ . (‘B E(rnr) - F({nn @ . @ anS)’

such that the E; are non-isomorphic, and the F; are non-isomorphic. From
Proposition 1.1, we conclude that each E; is isomorphic to some F;, and con-
versely. It follows that r = s, and that after a permutation, E; ~ F;. Further-
more, the isomorphism must induce an isomorphism

EE"-‘) N Fgmi)

for each i. Since E; ~ F;, we may assume without loss of generality that in
fact E; = F,. Thus we are reduced to proving: If a module is isomorphic to
E™ and to E™, with some simple module E, then n = m. But Endg(E™) is
isomorphic to the n x n matrix ring over the division ring Endg(E) = K.
Furthermore this isomorphism is verified at once to be an isomorphism as
K-vector space. The dimension of the space of n x n matrices over K is n?.
This proves that the multiplicity n is uniquely determined, and proves our
proposition.

When E admits a (finite) direct sum decomposition of simple submodules,
the number of times that a simple module of a given isomorphism class occurs
in a decomposition will be called the multiplicity of the simple module (or of
the isomorphism class of the simple module).

Furthermore, if

E=E"®..-®E™

is expressed as a sum of simple submodules, we shall call n; + --- + n, the
length of E. In many applications, we shall also write

E = nlEl @'..(—Banr: C—Bn,-E,-.
i=1
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§2. CONDITIONS DEFINING SEMISIMPLICITY

Let R be a ring. Unless otherwise specified in this section all modules and
homomorphisms will be R-modules and R-homomorphisms.

The following conditions on a module E are equivalent:
SS 1. E is the sum of a family of simple submodules.
SS2. E is the direct sum of a family of simple submodules.

SS3. Every submodule F of E is a direct summand, i.e. there exists a
submodule F' such that E = F @ F'.

We shall now prove that these three conditions are equivalent.

Lemma 2.1. Let E =) E; be a sum (not necessarily direct) of simple sub-
iel
modules. Then there exists a subset J < I such that E is the direct sum

DE,.

jeJ

Proof. Let J be a maximal subset of I such that the sum ) E; is direct.
jeJ

We contend that this sum is in fact equal to E. It will suffice to ;;rove that each
E; is contained in this sum. But the intersection of our sum with E; is a sub-
module of E;, hence equal to 0 or E;. If it is equal to 0, then J is not maximal,
since we can adjoin i to it. Hence E; is contained in the sum, and our lemma is
proved.

The lemma shows that SS 1 implies SS 2. To see that SS 2 implies SS 3, take

a submodule F, and let J be a maximal subset of I such that the sum F + (P E;
jeJ
is direct. The same reasoning as before shows that this sum is equal to E.
Finally assume $S3. To show SS 1, we shall first prove that every non-zero
submodule of E contains a simple submodule. Let v € E, v # 0. Then by
definition, Rv is a principal submodule, and the kernel of the homomorphism

R - Ry

is a left ideal L # R. Hence L is contained in a maximal left ideal M # R
(by Zorn’s lemma). Then M/L is a maximal submodule of R/L (unequal to
R/L), and hence Mv is a maximal submodt'e of Ry, unequal to Rv, correspond-
ing to M/L under the isomorphism

R/L — Ru.
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We can write E = Mv @ M’ with some submodule M’. Then
Rv = Mv@® (M' n Rv),

because every element x € Rv can be written uniquely as a sum x = av + x’
with « € M and x’ € M’, and x’ = x — av lies in Rv. Since Mv is maximal in
Ro, it follows that M’ N Rv is simple, as desired.

Let E, be the submodule of E which is the sum of all simple submodules of
E. If E,#E, then E = E, @ F with F # 0, and there exists a simple sub-
module of F, contradicting the definition of E,. This proves that SS 3 implies
SS1.

A module E satisfying our three conditions is said to be semisimple.

Proposition 2.2.  Every submodule and every factor module of a semisimple
module is semisimple.

Proof. Let F be a submodule. Let F, be the sum of all simple submodules
of F. Write E = F,® F,. Every element x of F has a unique expression
X = Xxo + xo With xo€ F, and xy € F,. But x5 = x — xo,€ F. Hence F is
the direct sum

F=F,®(FnF)).

We must therefore have F, = F, which is semisimple. As for the factor module,
write E = F @ F'. Then F'is a sum of its simple submodules, and the canonical
map E — E/F induces an isomorphism of F’ onto E/F. Hence E/F is semisimple.

§3. THE DENSITY THEOREM

Let E be a semisimple R-module. Let R’ = R'(E) be the ring Endgz(E). Then
E is also a R’-module, the operation of R’ on E being given by

(o, x) = o(x)

for ¢ € R’ and x € E. Each a € R induces a R'-homomorphism f,: E — E by
the map f,(x) = ax. This is what is meant by the condition

p(ax) = ag(x).

We let R” = R"(E) = Endg/(E). We call R’ the commutant of R and R" the
bicommutant. Thus we get a ring-homomorphism

R — Endg.(E) = R"(E) = R"
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by a+— f,. We now ask how big is the image of this ring-homomorphism.
The density theorem states that it is quite big.

Lemma 3.1. Let E be semisimple over R. Let R' = Endg(E), f € Endg/(E)
as above. Let x € R. There exists an element o € R such that ax = f(x).

Proof. Since E is semisimple, we can write an R-direct sum
E=Rx®F

with some submodule F. Let 7: E — Rx be the projection. Then 7 € R’, and
hence

f(x) = f(nx) = nf (x).
This shows that f(x) € Rx, as desired.
The density theorem generalizes the lemma by dealing with a finite number

of elements of E instead of just one. For the proof, we use a diagonal trick.

Theorem 3.2. (Jacobson). Let E be semisimple over R, and let
R’ = Endg(E). Let f € Endg(FE). Let x4, ..., x,, € E. Then there exists an
element o € R such that

ax; = f(x;) for i=1,...,n.
IfE is finitely generated over R, then the natural map R — Endg/(E) is surjective.

Proof. For clarity of notation, we shall first carry out the proof in case E
is simple. Let f®: E™ — E™ be the product map, so that

f(n)(yl’ "'5yn) = (f(yl)ﬁaf(yn))

Let R, = Endgx(E™). Then R, is none other than the ring of matrices with
coefficients in R'. Since f commutes with elements of R’ in its action on E, one
sees immediately that f is in Endg.(E(™). By the lemma, there exists an element
a € R such that

(axl’ tety axn) = (f(x1)9 e ’f(xn))s

which is what we wanted to prove.
When E is not simple, suppose that E is equal to a finite direct sum of simple
submodules E; (non-isomorphic), with multiplicities »;:

E=Ef @ @EY (E#E il i#))

then the matrices representing the ring of endomorphisms split according to
blocks corresponding to the non-isomorphic simple components in our direct
sum decomposition. Hence here again the argument goes through as before.
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The main point is that f lies in Endg/(E), and that we can apply the lemma.

We add the observation that if E is finitely generated over R’, then an element
f € Endg/(E) is determined by its value on a finite number of elements of E, so
the asserted surjectivity R — Endg (E) follows at once. In the applications
below, E will be a finite dimensional vector space over a field k, and R will be
a k-algebra, so the finiteness condition is automatically satisfied.

The argument when E is an infinite direct sum would be similar, but the
notation is disagreeable. However, in the applications we shall never need the
theorem in any case other than the case when FE itself is a finite direct sum of
simple modules, and this is the reason why we first gave the proof in that case,
and let the reader write out the formal details in the other cases, if desired.

Corollary 3.3. (Burnside’s Theorem). Let E be a finite-dimensional
vector space over an algebraically closed field k, and let R be a subalgebra of
End,(E). If E is a simple R-module, then R = Endg (E).

Proof. We contend that Endg(E) = k. At any rate, Endg(E) is a division
ring R’, containing k as a subring and every element of k£ commutes with every
element of R'. Let @ € R’. Then k(«) is a field. Furthermore, R’ is contained in
End(E) as a k-subspace, and is therefore finite dimensional over k. Hence k(«)
is finite over k, and therefore equal to k since k is algebraically closed. This
proves that Endg(E) = k. Let now {v;,..., v,} be a basis of E over k. Let
A € Endy(F). According to the density theorem, there exists ¢ € R such that

av; = Av; for i=1,...,n

Since the effect of 4 is determined by its effect on a basis, we conclude that
R = End(E).

Corollary 3.3 is used in the following situation as in Exercise 8. Let E
be a finite-dimensional vector space over field k. Let G be a submonoid of
GL(E) (multiplicative). A G-invariant subspace F of E is a subspace such that
oF C F for all 0 € G. We say that E is G-simple if it has no G-invariant
subspace other than 0 and E itself, and E # 0. Let R = k[G] be the subalgebra
of End,(E) generated by G over k. Since we assumed that G is a monoid, it
follows that R consists of linear combinations

Y a;0;

with a; € k and 6; € G. Then we see that a subspace F of E is G-invariant if and
only if it is R-invariant. Thus E is G-simple if and only if it is simple over R in
the sense which we have been considering. We can then restate Burnside’s
theorem as he stated it:

Corollary 3.4. Let E be a finite dimensional vector space over an alge-
braically closed field k, and let G be a (multiplicative) submonoid of GL(E).
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If E is G-simple, then k[ G] = End,(E).

When k is not algebraically closed, then we still get some result. Quite
generally, let R be a ring and E a simple R-module. We have seen that Endg(E)
is a division ring, which we denote by D, and E is a vector space over D.

Let R be a ring, and E any R-module. We shall say that E is a faithful
module if the following condition is satisfied. Given « € R such that ax = 0
for all x € E, we have « = 0. In the applications, E is a vector space over a field
k, and we have a ring-homomorphism of R into End,(E). In this way, E is an
R-module, and it is faithful if and only if this homomorphism is injective.

Corollary 3.5. (Wedderburn’s Theorem). Let R be a ring, and E a simple,
faithful module over R. Let D = Endg(E), and assume that E is finite dimen-
sional over D. Then R = Endp(E).

Proof. Let {v,...,v,} be a basis of E over D. Given A € Endy(E), by
Theorem 3.2 there exists a € R such that

oav; = Av; for i=1,...,n

Hence the map R — End(F) is surjective. Our assumption that E is faithful
over R implies that it is injective, and our corollary is proved.

Example. Let R be a finite-dimensional algebra over a field k, and assume
that R has a unit element, so is a ring. If R does not have any two-sided ideals
other than 0 and R itself, then any nonzero module E over R is faithful, because
the kernel of the homomorphism

R - Endy(E)

is a two-sided ideal # R. If E is simple, then E is finite dimensional over k.
Then D is a finite-dimensional division algebra over k. Wedderburn’s theorem
gives a representation of R as the ring of D-endomorphisms of E.

Under the assumption that R is finite dimensional, one can find a simple
module simply by taking a minimal left ideal # 0. Such an ideal exists merely
by taking a left ideal of minimal non-zero dimension over k. An even shorter
proof of Wedderburn’s theorem will be given below (Rieffel’s theorem) in this
case.

Corollary 3.6. Let R be a ring, finite dimensional algebra over a field k which
is algebraically closed. Let V be a finite dimensional vector space over k, with
a simple faithful representation p: R — Endy (V). Then p is an isomorphism,
in other words, R = Mat, (k).

Proof. We apply Corollary 3.5, noting that D is finite dimensional over
k. Given a € D, we note that k(a) is a commutative subfield of D, whence
k(o) = k by assumption that k is algebraically closed, and the corollary follows.
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Note. The corollary applies to simple rings, which will be defined below.

Suppose next that V;, . . ., V, are finite dimensional vector spaces over a field
k, and that R is a k-algebra with representations
R— Endy(V)),i=1,...,m,

so V; is an R-module. If we let
E=V&---8V,

then E is finite over R'(E), so we get the following consequence of Jacobson’s
density theorem.

Theorem 3.7. Existence of projection operators. Let k be a field, R a

k-algebra, and V,, ..., V,, finite dimensional k-spaces which are also simple

R-modules, and such that V, is not R-isomorphic to V; for i # j. Then there

exist elements e; € R such that e; acts as the identity on V; and ¢V, = 0

ifj+ i

Proof. We observe that the projection f; from the direct sum E to the i-th
factor is in Endg (E), because if ¢ € R’ then ¢(V)) C V; for all j. We may therefore
apply the density theorem to conclude the proof.

Corollary 3.8. (Bourbaki). Let k be a field of characteristic 0. Let R be
a k-algebra, and let E, F be semisimple R-modules, finite dimensional over k.
For each a € R, let a, agp be the corresponding k-endomorphisms on E and
F respectively. Suppose that the traces are equal; that is,

tr(ag) = tr(og) for all @ € R.
Then E is isomorphic to F as R-module.

Proof. Each of E and F is isomorphic to a finite direct sum of simple R-
modules, with certain multiplicities. Let V be a simple R-module, and suppose

E = V" @ direct summands not isomorphic to V
F = V' @ direct summands not isomorphic to V.

It will suffice to prove that m = n. Let e, be the element of R found in Theorem
3.7 such that e, acts as the identity on V, and is O on the other direct summands
of E and F. Then

tr(eg) = ndimi(V) and tr(ep) = mdimy(V).

Since the traces are equal by assumption, it follows that m = n, thus concluding
the proof. Note that the characteristic O is used here, because the values of the
trace are in k.

Example. In the language of representations, suppose G is a monoid, and
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we have two semisimple representations into finite dimensional k-spaces
p:G— Endi(E) and p': G — Endy(F)

(so p and p’ map G into the multiplicative monoid of End;). Assume that
tr p(o) = tr p'(o) for all ¢ € G. Then p and p' are isomorphic. Indeed, we let
R = k[G], so that p and p' extend to representations of R. By linearity, one has
that tr p(a) = tr p'(a) for all « € R, so one can apply Corollary 3.8.

§4. SEMISIMPLE RINGS

A ring R is called semisimple if 1 # 0, and if R is semisimple as a left module
over itself.

Proposition 4.1.  If R is semisimple, then every R-module is semisimple.

Proof. An R-module is a factor module of a free module, and a free module
is a direct sum of R with itself a certain number of times. We can apply Proposi-
tion 2.2 to conclude the proof.

Examples. 1) Let k£ be a field and let R = Mat, (k) be the algebra of
n X n matrices over k. Then R is semisimple, and actually simple, as we shall
define and prove in §5, Theorem 5.5.

2) Let G be a finite group and suppose that the characteristic of k does not
divide #(G). Then the group ring k[G] is semisimple, as we shall prove in Chapter
XVIII, Theorem 1.2.

3) The Clifford algebras C, over the real numbers are semisimple. See Exer-
cise 19 of Chapter XIX.

A left ideal of R is an R-module, and is thus called simple if it is simple as a
module. Two ideals L, L’ are called isomorphic if they are isomorphic as
modules.

We shall now decompose R as a sum of its simple left ideals, and thereby
get a structure theorem for R.

Let {L;};.; be a family of simple left ideals, no two of which are isomorphic,
and such that each simple left ideal is isomorphic to one of them. We say that
this family is a family of representatives for the isomorphism classes of simple
left ideals.

Lemma 4.2. Let L be a simple left ideal, and let E be a simple R-module.
If L is not isomorphic to E, then LE = 0.

Proof. We have RLE = LE, and LE is a submodule of E, hence equal to
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Oor E. Suppose LE = E. Let y € E be such that
Ly #0.

Since Ly is a submodule of E, it follows that Ly = E. The map o+ ay of L
into E is a homomorphism of L into E, which is surjective, and hence nonzero.
Since L is simple, this homomorphism is an isomorphism.
Let
Ri = Z L
L=>L;

be the sum of all simple left ideals isomorphic to L;. From the lemma, we con-
clude that R;R; = 0if i # j. This will be used constantly in what follows. We
note that R, is a left ideal, and that R is the sum

R = Z Ri’

iel
because R is a sum of simple left ideals. Hence for any j € I,
R;c R;R =R;R;cR;,

the first inclusion because R contains a unit element, and the last because R;
is a left ideal. We conclude that R; is also a right ideal, i.e. R; is a two-sided
ideal for allj e I.

We can express the unit element 1 of R as a sum

I=Ze,~

iel

with ¢; € R;. This sum is actually finite, almost all ¢;, = 0. Say ¢; # 0 for
indicesi = 1, ..., s, so that we write

[=e + - +e,.

For any x € R, write

X = in, xieRi.
iel
Forj=1,...,swehave ¢;x = ¢;x; and also

x;=1-x;=e;x; + - + eXx; = ¢;x;.

Furthermore, x = ¢;x + --- + e,x. This proves that there is no index i
other than i = 1,..., s and also that the i-th component x; of x is uniquely
determined as ¢;x = ¢;x;. Hence the sum R = R; + --- + R, is direct, and
furthermore, e; is a unit element for R;, which is therefore a ring. Since
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RiR; = 0fori # j, we find that in fact

R= HR‘
i=1

t

is a direct product-of the rings R;.

A ring R is said to be simple if it is semisimple, and if it has only one
isomorphism class of simple left ideals. We see that we have proved a structure
theorem for semisimple rings:

Theorem 4.3. Let R be semisimple. Then there is only a finite number of
non-isomorphic simple left ideals, say L,, ..., L,. If

Ri: ZL

L=L;

is the sum of all simple left ideals isomorphic to L,, then R, is a two-sided ideal,
which is also a ring (the operations being those induced by R), and R is ring
isomorphic to the direct product

R = nRi.
i=1

Each R is a simple ring. If e; is its unit element, then 1 = e, + -+ + e, and
R; = Re;. We have e;e; = 0if i # j.

We shall now discuss modules.

Theorem 4.4. Let R be semisimple, and let E be an R-module # 0. Then

E = @RiE:@eiE,

and R;E is the submodule of E consisting of the sum of all simple submodules
isomorphic to L;.

Proof. Let E; be the sum of all simple submodules of E isomorphic to L;.
If V is a simple submodule of E, then RV = V, and hence L;V = V for some i.
By a previous lemma, we have L; ~ V. Hence E is the direct sum of E, .. ., E,.
It is then clear that R,E = E;.

Corollary 4.5. Let R be semisimple. Every simple module is isomorphic to
one of the simple left ideals L;.

Corollary 4.6. A simple ring has exactly one simple module, up to iso-
morphism.
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Both these corollaries are immediate consequences of Theorems 4.3 and 4.4.

Proposition 4.7. Let k be a field and E a finite dimensional vector space
over k. Let S be a subset of End,(E). Let R be the k-algebra generated by the
elements of S. Then R is semisimple if and only if E is a semisimple R (or S)
module.

Proof. 1If R is semisimple, then E is semisimple by Proposition 4.1. Con-
versely, assume E semisimple as S-module. Then E is semisimple as R-module,
and so is a direct sum

E=@E
i=1
where each E; is simple. Then for each i there exists an element v; € E; such
that E; = Rv;. The map

x> (Xvq, ..., XU,)

is a R-homomorphism of R into E, and is an injection since R is contained in
End,(E). Since a submodule of a semisimple module is semisimple by Proposi-
tion 2.2, the desired result follows.

§6. SIMPLE RINGS

Lemma 5.1. Let R be a ring, and y € Endg(R) a homomorphism of R into
itself, viewed as R-module. Then there exists a € R such that y(x) = xu for
all x e R.

Proof. We have y(x) = ¥(x-1) = xyy(1). Let o = y(1).

Theorem 5.2. Let R be a simple ring. Then R is a finite direct sum of simple
left ideals. There are no two-sided ideals except 0 and R. If L, M are simple
left ideals, then there exists o € R such that Lo = M. We have LR = R.

Proof. Since R is by definition also semisimple, it is a direct sum of simple

left ideals, say @Lj. We can write 1 as a finite sum 1 = 21 B;, with B; € L;.
jed j=
Then

k=GR = BL,

i=1 j=1
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This proves our first assertion. As to the second, it is a consequence of the
third. Let therefore L be a simple left ideal. Then LR is a left ideal, because
RLR = LR, hence (R being semisimple) is a direct sum of simple left ideals,
say

Let M be a simple left ideal. We have a direct sum decomposition R=L@ L.
Let m: R — L be the projection. It is an R-endomorphism. Let ¢: L — M be
an isomorphism (it exists by Theorem 4.3). Then 6 o7 : R — R is an R-endo-
morphism. By the lemma, there exists a € R such that

ogon(x)=xa forall xeR.
Apply this to elements x € L. We find
o(x) = xa forall xelL.

The map x + xa is a R-homomorphism of L into M, is non-zero, hence is an
isomorphism. From this it follows at once that LR = R, thereby proving our
theorem.

Corollary 5.3. Let R be a simple ring. Let E be a simple R-module, and L
a simple left ideal of R. Then LE = E and E is faithful.

Proof. We have LE = L(RE)= (LR)E = RE =E. Suppose oFE =0
for some o« € R. Then RaRE = RaE = 0. But RaR is a two-sided ideal. Hence
RaR = 0, and « = 0. This proves that E is faithful.

Theorem 5.4. (Rieffel). Let R be a ring without two-sided ideals except 0
and R. Let L be a nonzero left ideal, R" = Endg(L) and R" = Endg.(L).
Then the natural map A: R — R" is an isomorphism.

Proof. The kernel of 4 is a two-sided ideal, so A is injective. Since LR
1s a two-sided ideal, we have LR = R and A(L)AR) = AR). Forany x, ye L,
and f € R”, we have f(xy) = f(x)y, because right multiplication by y is an
R-endomorphism of L. Hence A(L) is a left ideal of R”, so

R” = R"A(R) = R"ML)AR) = AL)AR) = AR),

as was to be shown.

In Rieffel’s theorem, we do not need to assume that L is a simple module.



656 SEMISIMPLICITY XVII, §5

On the other hand, L is an ideal. So this theorem is not equivalent with previous
ones of the same nature. In §7, we shall give a very general condition under
which the canonical homomorphism

R—)R”

of a ring into the double endomorphism ring of a module is an isomorphism.
This will cover all the previous cases.

As pointed out in the example following Wedderburn’s theorem, Rieffel’s
theorem applies to give another proof when R is a finite-dimensional algebra
(with unit) over a field k.

The next theorem gives a converse, showing that matrix rings over division
algebras are simple.

Theorem 5.5. Let D be a division ring, and E a finite-dimensional vector
space over D. Let R = Endp(E). Then R is simple and E is a simple R-module.
Furthermore, D = Endg(E).

Proof. We first show that E is a simple R-module. Letve E, v # 0. Then
v can be completed to a basis of E over D, and hence, given w € E, there exists
a € R such that av = w. Hence E cannot have any invariant subspaces other
than 0 or itself, and is simple over R. It is clear that E is faithful over R. Let
{vy,...,,} be a basis of E over D. The map

o (e, ..., 0L,)

of R into E™ is an R-homomorphism of R into E™, and is injective. Given
Wy, ..., w,) € E™, there exists « € R such that av, = w; and hence R is R-
isomorphic to E™. This shows that R (as a module over itself) is isomorphic
to a direct sum of simple modules and is therefore semisimple. Furthermore,
all these simple modules are isomorphic to each other, and hence R is simple
by Theorem 4.3.

There remains to prove that D = Endg(E). We note that E is a semisimple
module over D since it is a vector space, and every subspace admits a com-
plementary subspace. We can therefore apply the density theorem (the roles
of R and D are now permuted!). Let ¢ € Endgz(E). Let ve E, v # 0. By the
density theorem, there exists an element a € D such that ¢(v) = av. Let we E.
There exists an element f € R such that f(v) = w. Then

o(w) = o(f(v) = f(e)) = f(av) = af (v) = aw.

Therefore ¢(w) = aw for all w € E. This means that ¢ € D, and concludes our
proof.

Theorem 5.6. Let k be a field and E a finite-dimensional vector space of
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dimension m over k. Let R = End,(E). Then R is a k-space, and
dlmk R = mz.

Furthermore, m is the number of simple left ideals appearing in a direct sum
decomposition of R as such a sum.

Proof. The k-space of k-endomorphisms of E is represented by the space
of m x m matrices in k, so the dimension of R as a k-space is m*>. On the other
hand, the proof of Theorem 5.5 showed that R is R-isomorphic as an R-module
to the direct sum E™. We know the uniqueness of the decomposition of a
module into a direct sum of simple modules (Proposition 1.2), and this proves
our assertion.

In the terminology introduced in §1, we see that the integer m in Theorem
5.6 is the length of R.

We can identify R = End,(E) with the ring of matrices Mat,(k), once a
basis of E is selected. In that case, we can take the simple left ideals to be the
ideals L; (i = 1, ..., m) where a matrix in L, has coefficients equal to 0 except
in the i-th column. An element of L, thus looks like

a;; O 0
a,; 0 0
am1 O N 0

We see that R is the direct sum of the m columns.
We also observe that Theorem 5.5 implies the following:

If a matrix M € Mat, (k) commutes with all elements of Mat,(k), then M is a
scalar matrix.

Indeed, such a matrix M can then be viewed as an R-endomorphism of E,
and we know by Theorem 5.5 that such an endomorphism lies in k. Of course,
one can also verify this directly by a brute force computation.

§6. THE JACOBSON RADICAL, BASE CHANGE,
AND TENSOR PRODUCTS

Let R be a ring and let M be a maximal left ideal. Then R/M is an R-module,
and actually R/M is simple. Indeed, let J be a submodule of R/M with
J # R/M. Let J be its inverse image in R under the canonical homomorphism.
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Then J is a left ideal # M because J # R/M,soJ = R and J = 0. Conversely,
let E be a simple R-module and let v € E, v ¥ 0. Then Rv is a submodule # 0
of E, and hence Rv = E. Let M be the kernel of the homomorphism x > xv.
Then M is a left ideal, and M is maximal; otherwise there is a left ideal M' with
ROM DMandM' # R, + M. Then R/M = E and R/M’ is a non-zero homo-
morphic image of E, which cannot exist since E is simple (Schur’s lemma,
Proposition 1.1). Thus we obtain a bijection between maximal left ideals and
simple R-modules (up to isomorphism).

We define the Jacobson radical of R to be the left ideal N which is the
intersection of all maximal left ideals of R. We may also denote N = Rad(R).

Theorem 6.1. (a) For every simple R-module we have NE = 0.

(b) The radical N is a two-sided ideal, containing all nilpotent two-sided ideals.

(¢) Let R be a finite dimensional algebra over field k. Its radical is {0}, if and
only if R is semisimple.

(d) If R is a finite dimensional algebra over a field k, then its radical N is
nilpotent (i.e. N" = 0 for some positive integer r).

These statements are easy to prove, and hints will be given appropriately. See
Exercises 1 through 5.

Observe that under finite dimensionality conditions, the radical’s being 0
gives us a useful criterion for a ring to be semisimple, which we shall use in
the next result.

Theorem 6.2. Let A be a semisimple algebra, finite dimensional over a field
k. Let K be a finite separable extension of k. Then K ®, A is a semisimple
over K.

Proof. In light of the radical criterion for semisimplicity, it suffices to prove
that K ®; A has zero radical, and it suffices to do so for an even larger extension
than K, so that we may assume K is Galois over k, say with Galois group G.
Then G operates on K ® A by

oc(x®a)=0x®a for xe6K and a € A.

Let N be the radical of K & A. Since N is nilpotent, it follows that oN is also
nilpotent for all & € G, whence oN = N because N is the maximal nilpotent
ideal (Exercise 5). Let {a,, . . ., a,,} be a basis of A over k. Suppose N contains
the element

E=2x5Qa#0 with x, ek

For every y € K the element (y ® 1)¢ = E yx; ® a; also lies in N. Then
trace((y ® )§) = 2 0¢ = 2 Tr(rx) ® a; = 21 ® aTr(yx))

also lies in N, and lies in 1 ® A = A, thus proving the theorem.
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Remark. For the case when A is a finite extension of k, compare with
Exercises 1, 2, 3 of Chapter XVI.

Let A be a semisimple algebra, finite dimensional over a field k. Then by
Theorem 6.2 the extension of scalars A @, k? is semisimple if k is perfect. In
general, an algebra A over k is said to be absolutely semisimple if A &, k2 is
semisimple.

We now look at semisimple algebras over an algebraically closed field.

Theorem 6.3. Let A, B be simple algebras, finite dimensional over a
field k which is algebraically closed. Then A @, B is also simple. We have
A =~ End(V) and B = End (W) where V, W are finite dimensional vector spaces
over k, and there is a natural isomorphism

A ®, B ~ Endy(V ®, W) ~ End(V) ®, End,(W).

Proof. The formula is a special case of Theorem 2.5 of Chapter XVI, and
the isomorphisms A = Endy(V), B = End (W) exist by Wedderburn’s theorem
or its corollaries.

Let A be an algebra over & and let F be an extension field of k. We denote
by Ay the extension of scalars

Ar=A®,F.

Thus A is an algebra over F. As an exercise, prove that if k is the center of A,
then F is the center of Ap. (Here we identify F with 1 @ F.)

Let A, B be algebras over k. We leave to the reader the proof that for every
extension field F of &, we have a natural isomorphism

(A ®yB)r = Ap ® Bp.

We apply the above considerations to the tensor product of semisimple
algebras.

Theorem 6.4. Let A, B be absolutely semisimple algebras finite dimensional
over a field k. Then A ®, B is absolutely semisimple.

Proof. Let F = k? Then Ap is semisimple by hypothesis, so it is a direct
product of simple algebras, which are matrix algebras, and in particular we can
apply Theorem 6.3 to see that A ® By has no radical. Hence A & B has no
radical (because if N is its radical, then N ®, F = N is a nilpotent ideal of
Ap ®p Br), whence A @, B is semisimple by Theorem 6.1(c).

Remark. We have proved the above tensor product theorems rapidly in
special cases, which are already important in various applications. For a more
general treatment, I recommend Bourbaki’s Algebra, Chapter VIII, which gives
an exhaustive treatment of tensor products of semisimple and simple algebras.
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§7. BALANCED MODULES

Let R be a ring and E a module. We let R'(E) = Endg(E) and
R’(E) = Endg(E).

Let A: R — R” be the natural homomorphism such that A,(v) = xv for x e R
and v € E. If 1 is an isomorphism, we shall say that E is balanced. We shall say
that E is a generator (for R-modules) if every module is a homomorphic image
of a (possibly infinite) direct sum of E with itself. For example, R is a generator.

More interestingly, in Rieffel’s Theorem 5.4, the left ideal L is a gen-
erator, because LR = R implies that there is a surjective homomorphism

L X --- X L — R since we can write 1 as a finite combination

1 =xa + -+ x,a, withx; € L and g, € R.
The map (x{, ..., x,) = xja; + - - - + x,a, is a R-homomorphism of left module
onto R.

If E is a generator, then there is a surjective homomorphism E” — R (we
can take n finite since R is finitely generated, by one element 1).

Theorem 7.1. (Morita). Let E be an R-module. Then E is a generator if
and only if E is balanced and finitely generated projective over R'(E).

Proof. We shall prove half of the theorem, leaving the other half to the
reader, using similar ideas (see Exercise 12). So we assume that F is a generator,
and we prove that it satisfies the other properties by arguments due to Faith.

We first prove that for any module F, R @ F is balanced. We identify R and
F as the submodules R © 0 and 0 @ F of R @ F, respectively. For w € F,
let ¢,,:R @ F — F be the map ¢,(x + v) = xw. Then any f € R"R © F)
commutes with m, m,, and each ¢,. From this we see at once that
f(x + v) = f(1)(x + v) and hence that R & F is balanced. Let E be a gen-
erator, and E™ — R a surjective homomorphism. Since R is free, we can write
EM™ = R @ F for some module F, so that E® is balanced, Let g € R'(E).
Then g commutes with every element ¢ = (¢;;) in R'(E™) (with components
@;j € R'(E)), and hence there is some x € R such that g* = A{". Hence
g = A,, thereby proving that E is balanced, since A is obviously injective.

To prove that E is finitely generated over R'(E), we have

R(E)™ ~ Homg(E™, E) ~ Homg(R, E) ® Homg(F, E)

as additive groups. This relation also obviously holds as R’-modules if we
define the operation of R’ to be composition of mappings (on the left). Since
Hompg(R, E) is R'-isomorphic to E under the map h > h(1), it follows that E is
an R’-homomorphic image of R'™, whence finitely generated over R’. We also
see that E is a direct summand of the free R-module R'™ and is therefore
projective over R'(E). This concludes the proof.
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EXERCISES

The radical

1. (a) Let R be a ring. We define the radical of R to be the left ideal N which is the inter-
section of all maximal left ideals of R. Show that NE = 0 for every simple R-module
E. Show that N is a two-sided ideal. (b) Show that the radical of R/N is 0.

2. Aring is said to be Artinian if every descending sequence of left idealsJ; D J, D - - -
with J; # J;,, is finite. (a) Show that a finite dimensional algebra over a field is
Artinian. (b) If R is Artinian, show that every non-zero left ideal contains a simple
left ideal. (c) If R is Artinian, show that every non-empty set of ideals contains a
minimal ideal.

3. Let R be Artinian. Show that its radical is 0 if and only if R is semisimple. [Hint: Get
an injection of R into a direct sum @ R/M; where {M,} is a finite set of maximal left
ideals.]

4. Nakayama’s lemma. Let R be any ring and M a finitely generated module. Let N
be the radical of R. If NM = M show that M = 0. [Hint: Observe that the proof
of Nakayama’s lemma still holds.]

5. (a) LetJ be a two-sided nilpotent ideal of R. Show that J is contained in the radical.
(b) Conversely, assume that R is Artinian. Show that its radical is nilpotent, i.e.,
that there exists an integer r = 1 such that N* = 0. [Hint: Consider the descending
sequence of powers N”, and apply Nakayama to a minimal finitely generated left
ideal L C N* such that NL # 0.

6. Let R be a semisimple commutative ring. Show that R is a direct product of fields.

7. Let R be a finite dimensional commutative algebra over a field k. If R has no nilpotent
element # 0, show that R is semisimple.

8. (Kolchin) Let E be a finite-dimensional vector space over a field k. Let G be a sub-
group of GL(E) such that every element 4 € G is of type I + N where N is nilpotent.
Assume E # 0. Show that there exists an element v € E, v # 0 such that Av = vfor all
A eG. [Hint: First reduce the question to the case when k is algebraically closed by
showing that the problem amounts to solving linear equations. Secondly, reduce it to
the case when E is a simple k[G]-module. Combining Burnside’s theorem with the
fact that tr(4) = tr(I) for all 4 € G, show thatif 4, € G, A, =1 + N, thentr(NX) =0
for all X € End,(E), and hence that N = 0, 4, = 1.]

Semisimple operations

9. Let E be a finite dimensional vector space over a field k. Let R be a semisimple sub-
algebra of End,(E). Let a, b € R. Assume that

Ker by > Ker ag,

where b is multiplication by b on E and similarly for az. Show that there exists an
element s€ R such that sa = b. [Hint: Reduce to R simple. Then R = End,(E,)
and E = E. Let v,,...,v,€E be a D-basis for aE. Define s by s(av;) = bv; and
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10.

11.

12.

13.

14.

15.

extend s by D-linearity. Then saz = bg, 50 sa = b.]

Let E be a finite-dimensional vector space over a field k. Let A € End,(E). We say
that A4 is semisimple if E is a semisimple A-space, or equivalently, let R be the k-algebra
generated by A, then E is semisimple over R. Show that A is semisimple if and only
if its minimal polynomial has no factors of multiplicity > 1 over k.

Let E be a finite-dimensional vector space over a field k, and let S be a commutative
set of endomorphisms of E. Let R = k[S]. Assume that R is semisimple. Show that
every subset of S is semisimple.

Prove that an R-module E is a generator if and only if it is balanced, and finitely
generated projective over R'(E). Show that Theorem 5.4 is a consequence of Theorem
7.1.

Let A be a principal ring with quotient field K. Let A" be n-space over 4, and let
T=A"@A® - @ A"

be the direct sum of A" with itself r times. Then T is free of rank nr over A. If we view
elements of A" as column vectors, then T is the space of n x r matrices over A. Let
M = Mat,(A) be the ring of n x n matrices over A, operating on the left of . By a
lattice L in T we mean an A-submodule of rank nr over A. Prove that any such lattice
which is M-stable is M-isomorphic to T itself. Thus there is just one M-isomorphism
class of lattices. [Hint: Let g € M be the matrix with 1 in the upper left corner and
0 everywhere else, 5o g is a projection of A" on a 1-dimensional subspace. Then multi-
plication on the left g: T — A, maps T on the space of » x r matrices with arbitrary
first row and 0 everywhere else. Furthermore, for any lattice L in T the image gL is a
lattice in A4,, that is a free 4-submodule of rank r. By elementary divisors there exists
an r X r matrix Q such that

gL = A,0Q (multiplication on the right).

Then show that TQ = L and that multiplication by Q on the right is an M-isomorphism
of T with L.]

Let F be a field. Let n = n(F) be the vector space of strictly upper triangular n x n
matrices over F. Show that n is actually an algebra, and all elements of n are nilpo-
tent (some positive integral power is 0).

Conjugation representation. Let 4 be the multiplicative group of diagonal matrices in
F with non-zero diagonal components. For a € 4, the conjugation action of a on
Mat,(F) is denoted by ¢(a), so ¢(a)M = aMa™" for M e Mat,(F). (a) Show that n
is stable under this action. (b) Show that n is semisimple under this action. More
precisely, for | <i <j £ n, let Ej; be the matrix with (ij)-component 1, and all other
components 0. Then these matrices E; form a basis for n over F, and each Ej; is an
eigenvector for the conjugation action, namely for ¢ = diag(a,, ..., a,), we have

aE,lja‘1 = (a;/a;) Ej

so the corresponding character y;; is given by y;(a) = a;/a;. (c) Show that Mat, (F)
is semisimple, and in fact is equal to d @ n @ ‘n, where b is the space of diagonal
matrices.



CHAPTER XV"I

Representations of Finite
Groups

The theory of group representations occurs in many contexts. First, it is
developed for its own sake: determine all irreducible representations of a given
group. See for instance Curtis-Reiner’s Methods of Representation Theory (Wiley-
Interscience, 1981). It is also used in classifying finite simple groups. But already
in this book we have seen applications of representations to Galois theory and
the determination of the Galois group over the rationals. In addition, there is an
analogous theory for topological groups. In this case, the closest analogy is with
compact groups, and the reader will find a self-contained treatment of the compact
case entirely similar to §5 of this chapter in my book SL,(R) (Springer Verlag),
Chapter II, §2. Essentially, finite sums are replaced by integrals, otherwise the
formalism is the same. The analysis comes only in two places. One of them is
to show that every irreducible representation of a compact group is finite dimen-
sional; the other is Schur’s lemma. The details of these extra considerations are
carried out completely in the above-mentioned reference. I was careful to write
up §5 with the analogy in mind.

Similarly, readers will find analogous material on induced representations in
SL,(R), Chapter III, §2 (which is also self-contained).

Examples of the general theory come in various shapes. Theorem 8.4 may
be viewed as an example, showing how a certain representation can be expressed
as a direct sum of induced representations from 1-dimensional representations.
Examples of representations of S; and S, are given in the exercises. The entire
last section works out completely the simple characters for the group GL,(F)
when F is a finite field, and shows how these characters essentially come from
induced characters.

For other examples also leading into Lie groups, see W. Fulton and J. Harris,
Representation Theory, Springer Verlag 1991.
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§1. REPRESENTATIONS AND SEMISIMPLICITY

Let R be a commutative ring and G a group. We form the group algebra
R[G]. As explained in Chapter I1, §3 it consists of all formal linear combinations

Y a,0

oceG

with coefficients a, € R, almost all of which are 0. The product is taken in the
natural way,

(z a,a)( 5 btf) - S arbo

ceG teG

Let E be an R-module. Every algebra-homomorphism
R[G] — Endg(E)
induces a group-homomorphism
G — Autg(E),

and thus a representation of the ring R[G] in E gives rise to a representation of
the group. Given such representations, we also say that R[G], or G, operate on
E. We note that the representation makes E into a module over the ring R[G].

Conversely, given a representation of the group, say p : G — Autg(E), we
can extend p to a representation of R[G] as follows. Let a = 2 a,cand x € E.
We define

p()x = a,p(o)x.

It is immediately verified that p has been extended to a ring-homomorphism of
R[G] into Endg(E). We say that p is faithful on G if the map p : G — Autz(E)
is injective. The extension of p to R[G] may not be faithful, however.

Given a representation of G on E, we often write simply ox instead of p(o)x,
whenever we deal with a fixed representation throughout a discussion.

An R-module E, together with a representation p, will be called a G-module,
or G-space, or also a (G, R)-module if we wish to specify the ring R. If E, F
are G-modules, we recall that a G-homomorphism f: E — F is an R-linear map
such that f(ox) = of(x) forall x € E and 0 € G.

Given a G-homomorphism f : E — F, we note that the kernel of fis a G-
submodule of E, and that the R-factor module F/f(E) admits an operation of G
in a unique way such that the canonical map F — F/f(E) is a G-homomorphism.

By atrivial representation p : G — Autg(E), we shall mean the representation
such that p(G) = 1. A representation is trivial if and only if ox = x for all
x € E. We also say in that case that G operates trivially.
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We make R into a G-module by making G act trivially on R.

We shall now discuss systematically the representations which arise from a
given one, on Hom, the dual, and the tensor product. This pattern will be repeated
later when we deal with induced representations.

First, Homg(E, F) is a G-module under the action defined for f € Homg(E, F)
by

(lo1Hx) = af(o 'x).

The conditions for an operation are trivially verified. Note the o ! inside the
expression. We shall usually omit parentheses, and write simply [o]f(x) for the
left-hand side. We note that f is a G-homomorphism if and only if [o]f = f for
all ce G.

We are particularly concerned when F = R (so with trivial action), in which
case Homg(E, R) = E" is the dual module. In the terminology of representations,
if p: G — Autg(E) is a representation of G on E, then the action we have just
described gives a representation denoted by

pV: G — Autg(EY),

and called the dual representation (also called contragredient (ugh!) in the
literature).

Suppose now that the modules E, F are free and finite dimensional over R.
Let p be representation of G on E. Let M be the matrix of p(o) with respect to
a basis, and let M be the matrix of p¥(o) with respect to the dual basis. Then
it is immediately verified that

(N MY =M1

Next we consider the tensor product instead of Hom. Let E, E' be (G, R)-
modules. We can form their tensor product E @ E’, always taken over R. Then
there is a unique action of G on E ® E' such that for o € G we have

ogx ®x) = ox ® ox'.
Suppose that E, F are finite free over R. Then the R-isomorphism
) EY @ F =~ Homg(E, F)

of Chapter XVI, Corollary 5.5, is immediately verified to be a G-isomorphism.

Whether E is free or not, we define the G-invariant submodule of E to be
invg(E) = R-submodule of elements x € E such that ox = x for all 0 € G. If
E, F are free then we have an R-isomorphism

3) invg(EY ® F) = Homg(E, F).
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If p: G — Autgx(E) and p': G — Autg(E’) are representations of G on E
and E’' respectively, then we define their sum p @ p’ to be the representation
on the direct sum E @ E’, with o € G acting componentwise. Observe that G-iso-
morphism classes of representations have an additive monoid structure under
this direct sum, and also have an associative multiplicative structure under the
tensor product. With the notation of representations, we denote this product by
p ® p'. This product is distributive with respect to the addition (direct sum).

If G is a finite group, and F is a G-module, then we can define the trace
Trg: E — E which is an R-homomorphism, namely

Treg(x) = Y ox.

oceG

We observe that Trg(x) lies in invg(E), i.e. is fixed under the operation of
all elements of G. This is because

1 Trg(x) = ) 10x,

ogeG

and multiplying by 7 on the left permutes the elements of G.
In particular, if f: E — F is an R-homomorphism of G-modules, then
Trg(f): E — F is a G-homomorphism.

Proposition 1.1. Let G be a finite group and let E', E, F, F' be G-modules.
Let

ESELFLF
be R-homomorphisms, and assume that ¢, ¥ are G-homomorphisms. Then

Trg(Yofop) =y o Tre(f) e @.
Proof. We have

Trg(ofo o) = ZGU(l// ofoq)= Zc(c"//) o(af)e(ap)
= l//o(ZGGf>o<p =Y oTre(f)e 0.

Theorem 1.2. (Maschke). Let G be a finite group of order n, and let k be a
field whose characteristic does not divide n. Then the group ring k[G] is
semisimple.

Proof. Let E be a G-module, and F a G-submodule. Since k is a field,
there exists a k-subspace F’ such that E is the k-direct sum of F and F’. We let
the k-linear map = : E — F be the projection on F. Then n(x) = x for all xe F.
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Let

1
Q= . Trg(n).
We have then two G-homomorphisms
0-F2&E
©

such that j is the inclusion, and ¢ o j = id. It follows that E is the G-direct sum
of F and Ker ¢, thereby proving that k[G] is semisimple.

Except in §7 we denote by G a finite group, and we denote E, F finite
dimensional k-spaces, where & is a field of characteristic not dividing
#(G). We usually denote #(G) by n.

§2. CHARACTERS

Let p:k[G] — End,(E) be a representation. By the character X, of the
representation, we shall mean the k-valued function

1, k[G] - k

such that y («) = tr p(a) for all « € k[G]. The trace here is the trace of an endo-
morphism, as defined in Chapter XIII, §3. If we select a basis for E over k, it is
the trace of the matrix representing p(x), i.e., the sum of the diagonal elements.
We have seen previously that the trace does not depend on the choice of the basis.
We sometimes write yj instead of y,.

We also call E the representation space of p.

By the trivial character we shall mean the character of the representation of
G on the k-space equal to k itself, such that 6x = x for all x e k. It is the function
taking the value 1 on all elements of G. We denote it by y, or also by 1, if we
need to specify the dependence on G.

We observe that characters are functions on G, and that the values of a
character on elements of k[G] are determined by its values on G (the extension
from G to k[G] being by k-linearity).

We say that two representations p, ¢ of G on spaces E, F are isomorphic if
there is a G-isomorphism between E and F. We then see that if p, ¢ are iso-
morphic representations, then their characters are equal. (Put in another way,
if E, F are G-spaces and are G-isomorphic, then y; = yr.) In everything that
follows, we are interested only in isomorphism classes of representations.
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If E, F are G-spaces, then their direct sum E @ F is also a G-space, the opera-
tion of G being componentwise. If x @ ye E ® F with xe E and y € F, then
a(x ®y) = ox ® oy.

Similarly, the tensor product E ®, F = E ® F is a G-space, the operation
of G being given by a(x ® y) = ox ® oy.

Proposition 2.1. If E, F are G-spaces, then
X+ Xr = Xeor and  YpXr = Xeer-
If xV denotes the character of the dual representation on EV, then

xV(0) = x(o™Y
x(o) ifk = C.

Proof. The first relation holds because the matrix of an element ¢ in the
representation E @ F decomposes into blocks corresponding to the representa-
tion in E and the representation in F. As to the second, if {;} is a basis of E and
{w;} is a basis of F over k, then we know that {v; ® w;} is a basis of E ® F. Let
(a;,) be the matrix of ¢ with respect to our basis of E, and (b;,) its matrix with
respect to our basis of F. Then

o(v; @ w)) = ov; ® ow; = Z a;,v, ® Z bj,w,
v I3
=Y aybj,v,®w,.
v, 1

By definition, we find
xeer(0) = z Z a;ib;; = xe(0)r(0),
J

i

thereby proving the statement about tensor products. The statement for the char-
acter of the dual representation follows from the formula for the matrix ‘M ™!
given in §1. The value given as the complex conjugate in case k = C will be
proved later in Corollary 3.2.

So far, we have defined the notion of character associated with a representa-
tion. It is now natural to form linear combinations of such characters with more
general coefficients than positive integers. Thus by a character of G we shall
mean a function on G which can be written as a linear combination of characters
of representations with arbitrary integer coefficients. The characters associated
with representations will be called effective characters. Everything we have
defined of course depends on the field k, and we shall add over k to our expressions
if we need to specify the field k.
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We observe that the characters form a ring in view of Proposition 2.1. For
most of our work we do not need the multiplicative structure, only the additive
one.

By a simple or irreducible character of G one means the character of a
simple representation (i.e., the character associated with a simple k[G]-module).

Taking into account Theorem 1.2, and the results of the preceding chapter
concerning the structure of simple and semisimple modules over a semisimple
ring (Chapter XVII, §4) we obtain:

Theorem 2.2.  There are only a finite number of simple characters of G (over
k). The characters of representations of G are the linear combinations of the
simple characters with integer coefficients 2 0.

We shall use the direct product decomposition of a semisimple ring. We
have

K61 = TIR,

where each R; is simple, and we have a corresponding decomposition of the unit
element of k[G]:

l=e; + - +e,

where e; is the unit element of R;, and e;e; = 0if i # j. Also, R;R; = 0if i # j.
We note that s = s(k) depends on k.

If L; denotes a typical simple module for R; (say one of the simple left ideals),
we let y; be the character of the representation on L;.

We observe that y(x) = Ofor alloa€ R;ifi # j. Thisis a fundamental relation
of orthogonality, which is obvious, but from which all our other relations will
Sollow.

Theorem 2.3. Assume that k has characteristic 0. Then every effective char-
acter has a unique expression as a linear combination

= znixia niEZ’nigO,
i=1

where x1, ..., xs are the simple characters of G over k. Two representations are
isomorphic if and only if their associated characters are equal.
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Proof. Let E be the representation space of y. Then by Theorem 4.4 of
Chapter XVII,

E =~ @ n;L;.
i=1

The sum is finite because we assume throughout that E is finite dimensional.
Since ¢; acts as a unit element on L;, we find

xi(e;) = dim, L;.
We have already seen that y(e;) = 0if i # j. Hence
x(e;) = n; dim; L;.
Since dim, L; depends only on the structure of the group algebra, we have
recovered the multiplicities n,, ..., n,. Namely, n; is the number of times that
L; occurs (up to an isomorphism) in the representation space of y, and is the

value of y(e;) divided by dim, L, (we are in characteristic 0). This proves our
theorem.

As a matter of definition, in Theorem 2.3 we call n; the multiplicity of y; in x.
In both corollaries, we continue to assume that k has characteristic 0.

Corollary 2.4. As functions of G into k, the simple characters
JATREREY £

are linearly independent over k.

Proof. Suppose that ) a;; = 0 with a;€ k. We apply this expression to e;
and get

0 = (Z aixi)(ej) = aj dlmk Lj
Hence a; = 0 for all j.

In characteristic 0 we define the dimension of an effective character to be
the dimension of the associated representation space.

Corollary 2.5. The function dim is a homomorphism of the monoid of effective
characters into Z.
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Example. Let G be a cyclic group of order equal to a prime number p.
We form the group algebra Q[G]. Let 5 be a generator of G. Let

l+a+ad*+ - +0°!
e, = , e, =1—¢e,.
p

Then te; = e, for any 1€ G and consequently e? = ¢,. It then follows that
e} = e, and eje, = 0. The field Qe, is isomorphic to Q. Let w = ge,. Then
w? = e,. Let Q, = Qe,. Since w # e,, and satisfies the irreducible equation

Xrly...41=0

over Q,, it follows that Q,(w) is isomorphic to the field obtained by adjoining
a primitive p-th root of unity to the rationals. Consequently, Q[ G] admits the
direct product decomposition

QLG] ~ Q x Q)

where { is a primitive p-th root of unity.
As another example, let G be any finite group, and let

el=120.

nsce

Then for any 1€ G we have te; = e, and e? = e,. If we let ¢} = 1 — ¢, then
el = ¢\, and e¢\e; = e e} = 0. Thus for any field k (whose characteristic does
not divide the order of G according to conventions in force), we see that

k[G] = ke, x k[G]e,

is a direct product decomposition. In particular, the representation of G on the
group algebra k[G] itself contains a 1-dimensional representation on the
component ke;, whose character is the trivial character.

§3. 1-DIMENSIONAL REPRESENTATIONS

By abuse of language, even in characteristic p > 0, we say that a character is
1-dimensional if it is a homomorphism G — k*.
Assume that E is a 1-dimensional vector space over k. Let

p:G — Aut(E)
be a representation. Let {v} be a basis of E over k. Then for each ¢ € G, we have

ov = y(ow
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for some element (o) € k, and y(o) # 0 since ¢ induces an automorphism of E.
Then for 7€ G,

100 = y(o)tv = y(o)x(t)v = y(oT)v.

We see that y: G - k* is a homomorphism, and that our 1-dimensional char-
acter is the same type of thing that occurred in Artin’s theorem in Galois theory.
Conversely, let y: G — k* be a homomorphism. Let E be a 1-dimensional
k-space, with basis {v}, and define o(av) = ay(o)v for all a e k. Then we see at
once that this operation of G on E gives a representation of G, whose associated
character is .
Since G is finite, we note that

xo) = x(a") = x(1) = 1.

Hence the values of 1-dimensional characters are n-th roots of unity. The
1-dimensional characters form a group under multiplication, and when G is a

finite abelian group, we have determined its group of 1-dimensional characters
in Chapter I, §9.

Theorem 3.1. Let G be a finite abelian group, and assume that k is alge-
braically closed. Then every simple representation of G is 1-dimensional. The
simple characters of G are the homomorphisms of G into k*.

Proof. The group ring k[G] is semisimple, commutative, and is a direct
product of simple rings. Each simple ring is aring of matrices over k (by Corollary
3.6 Chapter XVII), and can be commutative if and only if it is equal to k.

For every 1-dimensional character y of G we have

20) =™ ).

If k is the field of complex numbers, then
200) = (o)™ = y(a7").

Corollary 3.2. Let k be algebraically closed. Let G be a finite group. For
any character y and o € G, the value y(a) is equal to a sum of roots of unity with
integer coefficients (i.e. coefficients in Z or Z/pZ depending on the char-
acteristic of k).

Proof. Let H be the subgroup generated by g. Then H is a cyclic subgroup.
A representation of G having character y can be viewed as a representation for
H by restriction, having the same character. Thus our assertion follows from
Theorem 3.1.
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§4. THE SPACE OF CLASS FUNCTIONS

By a class function of G (over k, or with values in k), we shall mean a function
f: G — ksuch that f(ora™ ') = f(7) for all o, T € G. It is clear that characters
are class functions, because for square matrices M, M’ we have

tr(MM'M ™) = tr(M').

Thus a class function may be viewed as a function on conjugacy classes.
We shall always extend the domain of definition of a class function to the
group ring, by linearity. If

x= ) a,o0,

oceG

and fis a class function, we define

f@ =% a,f(o).

aeG

Let 6, € G. If 6 € G, we write 6 ~ g, if ¢ is conjugate to g, that is, if there
exists an element 7 such that 6, = 1ot~ !. An element of the group ring of type

)= )0
ag~ag

will also be called a conjugacy class.

Proposition 4.1. An element of k[G] commutes with every element of G if
and only if it is a linear combination of conjugacy classes with coefficients in k.

Proof. Leta = ) a,c and assume ot = ta for all te€ G. Then

oceG
Y a,t0t” ' = ) a,0.
ogeG oceG

Hence a,, = a, whenever o is conjugate to o, and this means that we can write
“=y a,y
Y

where the sum is taken over all conjugacy classes 7.

Remark. We note that the conjugacy classes in fact form a basis of the
center of Z[G] over Z, and thus play a universal role in the theory of rep-
resentations.

We observe that the conjugacy classes are linearly independent over k,
and form a basis for the center of k[G] over k.
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Assume for the rest of this section that k is algebraically closed. Then
k[G] = [] R
i=1

is a direct product of simple rings, and each R; is a matrix algebra over k. In a
direct product, the center is obviously the product of the centers of each factor.
Let us denote by k; the image of k in R;, in other words,

ki = ke,-,
where e; is the unit element of R;. Then the center of k[ G] is also equal to
ki
=1

which is s-dimensional over k.
If L; is a typical simple left ideal of R;, then

R; =~ End,(L)).
We let

d; = dim; L;.
Then

d? =dim R, and Y d} =n.
i=1

We also have the direct sum decomposition
R, ~ L@
i 3

as a (G, k)-space.
The above notation will remain fixed from now on.

We can summarize some of our results as follows.

Proposition 4.2. Let k be algebraically closed. Then the number of conjugacy
classes of G is equal to the number of simple characters of G, both of these being
equal to the number s above. The conjugacy classes y,, ..., 7y, and the unit
elements ey, ..., e, form bases of the center of k[G].

The number of elements in y; will be denoted by h;. The number of elements
in a conjugacy class y will be denoted by h,. We call it the class number. The
center of the group algebra will be denoted by Z,(G).



XVIII, §4 THE SPACE OF CLASS FUNCTIONS 675

We can view k[G] as a G-module. Its character will be called the regular
character, and will be denoted by ., or r¢ if we need to specify the dependence
on G. The representation on k[ G] is called theregular representation. From our
direct sum decomposition of k[ G] we get

Xreg = Z diXi'
i=1

We shall determine the values of the regular character.

Proposition 4.3.  Let y,., be the regular character. Then
Ji@ =0 if 0€G o1
Xreg(l) =n

Proof. Letl =oy,...,0,bethe elements of G. They form a basis of k[G]
over k. The matrix of 1 is the unit n x n matrix. Thus our second assertion
follows. If ¢ # 1, then multiplication by ¢ permutes ¢4, ..., 6,, and it is im-
mediately clear that all diagonal elements in the matrix representing ¢ are 0.
This proves what we wanted.

We observe that we have two natural bases for the center Z,(G) of the
group ring. First, the conjugacy classes of elements of G. Second, the elements
ey, - .., e (ie. the unit elements of the rings R;). We wish to find the relation
between these, in other words, we wish to find the coefficients of ¢; when ex-
pressed in terms of the group elements. The next proposition does this. The
values of these coefficients will be interpreted in the next section as scalar
products. This will clarify their mysterious appearance.

Proposition 4.4.  Assume again that k is algebraically closed. Let

ei= ) a1, ack
teG

Then

1 _ d;,  _
a, = ;Xreg(eir 1) = ;Xi(r l)'

Proof. We have for all 1€ G:

Xreg(eif_l) = Xreg( Z aao-f_l) = Z aaXreg(O'T_l)-
geG

oceG
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By Proposition 4.3, we find
Xreg(eir—l) = nd,.

On the other hand,
Tregle: T D) = Y djyfet ) = diyde;t™ ) = dig(z ™).
=1

Hence
diy(t™') = na,

for all 7€ G. This proves our proposition.
Corollary 4.5. Each e; can be expressed in terms of group elements with
coefficients which lie in the field generated over the prime field by m-th roots
of unity, if m is an exponent for G.
Corollary 4.6. The dimensions d; are not divisible by the characteristic of k.
Proof. Otherwise, e; = 0, which is impossible.
Corollary 4.7. The simple characters ¥, . . ., x, are linearly independent
over k.

Proof. The proof in Corollary 2.4 applies, since we now know that the
characteristic does not divide d;.

Corollary 4.8. Assume in addition that k has characteristic 0. Then d;|n

for each i.

Proof. Multiplying our expression for e; by n/d;, and also by e;, we find

| =

€ = Z Xi(o'_l)o'ei-

i oceG

_

Let { be a primitive m-th root of unity, and let M be the module over Z gen-
erated by the finite number of elements (*ce; (v =0,...,m — 1 and g €G).
Then from the preceding relation, we see at once that multiplication by n/d;
maps M into itself. By definition, we conclude that n/d; is integral over Z,
and hence lies in Z, as desired.

Theorem 4.9. Let k be algebraically closed. Let Z,(G) be the center of
k[G], and let X,(G) be the k-space of class functions on G. Then Z,(G) and
X ,(G) are the dual spaces of each other, under the pairing

(f =1 ().
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The simple characters and the unit elements ey, ..., e, form orthogonal bases
to each other. We have

Xi(ej) = 5ijdi‘

Proof. The formula has been proved in the proof of Theorem 2.3. The
two spaces involved here both have dimension s, and d; # 0 in. k. Our prop-
osition is then clear.

§6. ORTHOGONALITY RELATIONS

Throughout this section, we assume that k is algebraically closed.

If R is a subring of k, we denote by X x(G) the R-module generated over R
by the characters of G. It is therefore the module of functions which are linear
combinations of simple characters with coefficients in R. If R is the prime ring
(i.e. the integers Z or the integers mod p if k has characteristic p), then we denote
X r(G) by X(G).

We shall now define a bilinear map on X(G) x X(G). If f, g€ X(G), we
define

1
f9> = ¥ f@u)
ceG

Theorem 5.1. The symbol {f, g) for f, g € X(G) takes on values in the prime
ring. The simple characters form an orthonormal basis for X(G), in other words

i Zj> = 5ij-

For each ring R < k, the symbol has a unique extension to an R-bilinear form
Xr(G) x Xg(G) = R, given by the same formula as above.

Proof. By Proposition 4.4, we find

1e) = & Y 1o o).
nsec

If i # j we get 0 on the left-hand side, so that y; and y; are orthogonal. If i = j
we get d; on the left-hand side, and we know that d; # 0 in k, by Corollary 4.6.
Hence {(y;, x;> = 1. Since every element of X(G) is a linear combination of
simple characters with integer coefficients, it follows that the values of our
bilinear map are in the prime ring. The extension statement is obvious, thereby
proving our theorem.
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Assume that k has characteristic 0. Let m be an exponent for G, and let R
contain the m-th roots of unity. If R has an automorphism of order 2 such that
its effect on a root of unity is { — { ~!, then we shall call such an automorphism
a conjugation, and denote it by a +— a.

Theorem 5.2. Let k have characteristic 0, and let R be a subring containing
the m-th roots of unity, and having a conjugation. Then the bilinear form on
X(G) has a unique extension to a hermitian form

Xgr(G) x Xg(G) > R,

given by the formula

S = T )

ceG

The simple characters constitute an orthonormal basis of X g(G) with respect
to this form.

Proof. The formula given in the statement of the theorem gives the same
value as before for the symbol { f, g> when f, g lie in X(G). Thus the extension
exists, and is obviously unique.

We return to the case when k has arbitrary characteristic.

Let Z(G) denote the additive group generated by the conjugacy classes
V1, - -, Ys0over the primering. It is of dimension s. We shall define a bilinear map
on Z(G) x Z(G). If« = ) a,o has coefficients in the prime ring, we denote by

o~ the element Y a,o” "

Proposition 5.3. For a, f € Z(G), we can define a symbol {a, B by either one
of the following expressions, which are equal:

S 1@ (8).

v=1

S| =

@ By = @) =

The values of the symbol lie in the prime ring.

Proof. Each expression is linear in its first and second variable. Hence
to prove their equality, it will suffice to prove that the two expressions are equal
when we replace o by ¢; and f by an element 7 of G. But then, our equality is
equivalent to

Xreg(eir_ l) = lev(ei)Xv(T_ 1)'

Since x,(e;) = 0 unless v = i, we see that the right-hand side of this last relation
is equal to d;x; (7~ !). Our two expressions are equal in view of Proposition 4.4.
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The fact that the values lie in the prime ring follows from Proposition 4.3: The
values of the regular character on group elements are equal to 0 or 1, and hence
in characteristic 0, are integers divisible by n.

As with X (G), we use the notation Zg(G) to denote the R-module generated
by y,, ..., ys over an arbitrary subring R of k.

Lemma 5.4. For each ring R contained in k, the pairing of Proposition 5.3
has a unique extension to a map

Zn(G) x Z(G) > R

which is R-linear in its first variable. If R contains the m-th roots of unity,
where m is an exponent for G, and also contains 1/n, then e; € Z g(G) for all i.
The class number h; is not divisible by the characteristic of k, and we have

> 1
; <el’ ’yv h Vv

Proof. We note that h; is not divisible by the characteristic because it is
the index of a subgroup of G (the isotropy group of an element in y; when G
operates by conjugation), and hence h; divides n. The extension of our pairing
as stated is obvious, since vy, ..., 7Y, form a basis of Z(G) over the prime ring.
The expression of e; in terms of this basis is only a reinterpretation of Proposition
4.4 in terms of the present pairing.

Let E be a free module over a subring R of k, and assume that we have a
bilinear symmetric (or hermitian) form on E. Let {v,, ..., v,} be an orthogonal
basis for this module. If

v=a,0p + -+ agg

with a; € R, then we call ay, ..., a, the Fourier coefficients of v with respect to
our basis. In terms of the form, these coefficients are given by
a4 = <v’ Ui>
' <Ui ’ Ui>

provided <{v;, v;> # 0.

We shall see in the next theorem that the expression for ¢; in terms of
Y1» - - - » V5 18 @ Fourier expansion.

Theorem 5.5. The conjugacy classes v, ..., y, constitute an orthogonal
basis for Z(G). We have {y;,y,> = h;. For each ring R contained in k, the
bilinear map of Proposition 5.3 has a unique extension to a R-bilinear map

Zx(G) x Zg(G) > R.
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Proof. We use the lemma. By linearity, the formula in the lemma remains
valid when we replace R by k, and when we replace e; by any element of Z,(G), in
particular when we replace ¢; by ;. But {y,,...,y,} is a basis of Z,(G), over k.
Hence we find that (y;, ;> = h;and (y;, y;> = 0if i # j, as was to shown.

Corollary 5.6. If G is commutative, then

0 if oisnotequaltort

ixv(a)xv(r") = {1

if oisequaltor.

S |-

Proof. When G is commutative, each conjugacy class has exactly one ele-
ment, and the number of simple characters is equal to the order of the group.

We consider the case of characteristic 0 for our Z(G) just as we did for X(G).
Let k have characteristic 0, and R be a subring of k containing the m-th roots of
unity, and having a conjugation. Leta = Y a,¢ with a,€ R. We define

ceG

o= Z a,o” L.
ceG

Theorem 5.7. Let k have characteristic 0, and let R be a subring of k, con-
taining the m-th roots of unity, and having a conjugation. Then the pairing of
Proposition 5.3 has a unique extension to a hermitian form

Zg(G) x Zg(G) > R

given by the formulas

S -

B =1 @D = 5, L 0@

The conjugacy classes vy, ..., y form an orthogonal basis for Zg(G). If R
contains 1/n, then ey, . .. e lie in Zr(G) and also form an orthogonal basis for
Zx(G). We have {e;, e,y = d?/n.

Proof. The formula given in the statement of the theorem gives the same
value as the symbol {«, B> of Proposition 5.3 when a, f lie in Z(G). Thus the
extension exists, and is obviously unique. Using the second formula in Propo-
sition 5.3, defining the scalar product, and recalling that y,(e;) = 0 if v # i, we
see that

1 -
e, ey = ; xi(exi(e:,

whence our assertion follows.



XVIll, §5 ORTHOGONALITY RELATIONS 681

We observe that the Fourier coefficients of e, relative to the basis y,, ..., 7,
are the same with respect to the bilinear form of Theorem 5.5, or the hermitian
form of Theorem 5.7. This comes from the fact that y,, ..., y, lie in Z(G), and
form a basis of Z(G) over the prime ring.

We shall now reprove and generalize the orthogonality relations by another
method. Let E be a finite dimensional (G, k)-space, so we have a representation

G — Auty(E).

After selecting a basis of E, we get a representation of G by d x d matrices. If
{vy, ..., vy} is the basis, then we have the dual basis {4, ..., 4,} such that
A{v;) = d;;. If an element ¢ of G is represented by a matrix (p;(0)), then each
coefficient p; (o) is a function of o, called the ij-coefficient function. We can also
write

Pij(o') = Aj(UUi)-

But instead of indexing elements of a basis or the dual basis, we may just as
well work with any functional A on E, and any vector v. Then we get a function

o Xov) = p; (o),

which will also be called a coefficient function. In fact, one can always complete
v = v, to a basis such that 4 = 4, is the first element in the dual basis, but using
the notation p, , is in many respects more elegant.

We shall constantly use:

Schur’s Lemma. Let E, F be simple (G, k)-spaces, and let
¢o:E->F
be a homomorphism. Then either ¢ = 0 or ¢ is an isomorphism.

Proof. Indeed, the kernel of ¢ and the image of ¢ are subspaces, so the
assertion is obvious.

We use the same formula as before to define a scalar product on the space of
all k-valued functions on G, namely

fgy=- ) floy(a™™).

1
Nsece
We shall derive various orthogonality relations among coefficient functions.

Theorem 5.8. Let E, F be simple (G, k)-spaces. Let A be a k-linear functional
onE, let xe Eand ye F. If E, F are not isomorphic, then

Y Mox)a~ 'y = 0.

oeG
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If wis a functional on F then the coefficient functions p,  and p, , are ortho-
gonal, that is
Y, Aoxu(e™'y) = 0.
cgeG
Proof. The map x+— ) AMox)s~'y is a G-homomorphism of E into F, so
Schur’s lemma concludes the proof of the first statement. The second comes by
applying the functional p.

As a corollary, we see that if y, ¢ are distinct irreducible characters of G
over k, then
X, ¥) =0,
that is the characters are orthogonal. Indeed, the character associated with a
representation p is the sum of the diagonal coefficient functions,

d
X = .Z,lpii’

where d is the dimension of the representation. Two distinct characters cor-
respond to non-isomorphic representations, so we can apply Proposition 5.8.

Lemma5.9. Let E be a simple (G, k)-space. Then any G-endomorphism of
E is equal to a scalar multiple of the identity.

Proof. The algebra Endg (E) is a division algebra by Schur’s lemma,
and is finite dimensional over k. Since k is assumed algebraically closed, it must
be equal to k because any element generates a commutative subfield over k.
This proves the lemma.

Lemma 5.10. Let E be a representation space for G of dimension d. Let A
be a functional on E, and let x€ E. Let ¢, , € End,(E) be the endomorphism
such that

@5,:(y) = Ay)x.
Then tr(e;, ) = A(x).

Proof. If x = 0 the statement is obvious. Let x # 0. If A(x) # 0 we pick
a basis of E consisting of x and a basis of the kernel of 1. If A(x) = 0, we pick a
basis of E consisting of a basis for the kernel of 4, and one other element. In
either case it is immediate from the corresponding matrix representing ¢, . that
the trace is given by the formula as stated in the lemma.

Theorem 5.11. Let p:G — Aut(E) be a simple representation of G, of
dimensiond. Then the characteristic of k does not divided. Let x,y € E. Then
for any functionals A, p on E,

Y. Mou(e™1y) = % M)

ceG
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Proof. It suffices to prove that
Y Mox)o~ly = Z—}.(y)x.
ceG

For fixed y the map
x> Y Mox)s™ly

ceG

is immediately verified to be a G-endomorphism of E, so is equal to ¢I for some
cek by Lemma 5.9. In fact, it is equal to

Y e )o@, 0 plo).

geG

The trace of this expression is equal to n - tr(¢,_,) by Lemma 5.10, and also to dc.
Taking 4, y such that A(y) = 1 shows that the characteristic does not divide d,
and then we can solve for ¢ as stated in the theorem.

Corollary 5.12. Let y be the character of the representation of G on the
simple space E. Then

a =1

Proof. This follows immediately from the theorem, and the expression of
X as

X=pP11t+ "+ Pa

We have now recovered the fact that the characters of simple representations
are orthonormal. We may then recover the idempotents in the group ring, that

is, if ¥4, ..., x, are the simple characters, we may now define
d; _
€ = — z P ()
N sec

Then the orthonormality of the characters yields the formulas:

Corollary 5.13.  y(e) = 6;;d; and y,.y = Y diyi-
i=1

Proof. The first formula is a direct application of the orthonormality of the
characters. The second formula concerning the regular character is obtained
by writing

Xreg = Z ijj
J
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with unknown coefficients. We know the values y4(1) = n and g, (o) = 0 if
o # 1. Taking the scalar product of y,., with y; for i = 1, ..., s immediately
yields the desired values for the coefficients m;.

Since a character is a class function, one sees directly that each e; is a linear
combination of conjugacy classes, and so is in the center of the group ring k[G].

Now let E; be a representation space of y;, and let p; be the representation
of G or k[G] on E;. For aek[G] we let p(a): E; —» E; be the map such that
pa)x = ax for all x e E;.

Proposition 5.14. We have
ple) =1id and ple) =0 ifi#]

Proof. The map x — e;x is a G-homomorphism of E; into itself since e; is in
the center of k[G]. Hence by Lemma 5.9 this homomorphism is a scalar
multiple of the identity. Taking the trace and using the orthogonality relations
between simple characters immediately gives the desired value of this scalar.

We now find that

e

ei=1
1

]

13

because the group ring k[G] is a direct sum of simple spaces, possibly with
multiplicities, and operates faithfully on itself.

The orthonormality relations also allow us to expand a function in a Fourier
expression, relative to the characters if it is a class function, and relative to the
coefficient functions in general. We state this in two theorems.

Theorem 5.15. Let fbe a class function on G. Then
f= Z L xdti-
i=1

Proof. The number of conjugacy class is equal to the number of distinct
characters, and these are linearly independent, so they form a basis for the class
functions. The coefficients are given by the stated formula, as one sees by taking
the scalar product of f with any character y; and using the orthonormality.

Theorem 5.16. Let p be a matrix representation of G on E; relative to a
choice of basis, and let p?, be the coefficient functions of thismatrix,i = 1,...,s
and v, = 1,...,d;. Then the functions p, form an orthogonal basis for the
space of all functions on G, and hence for any function f on G we have

S 1 . .
f= Z Z d_ <fa pf,',)“}p(vl,)u-

i=1 v,u%i
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Proof. That the coefficient functions form an orthogonal basis follows from
Theorems 5.8 and 5.11. The expression of f in terms of this basis is then merely
the standard Fourier expansion relative to any scalar product. This concludes
the proof.

Suppose now for concreteness that k = C is the complex numbers. Recall
that an effective character y is an element of X(G), such that if

s
x= 3 mx

is a linear combination of the simple characters with integral coefficients, then
we have m; = 0 for all i. In light of the orthonormality of the simple characters,
we get for all elements y € X(G) the relations

I = O 0 = Zm? and mi = (x, x),
Hence we get (a) of the next theorem.

Theorem 5.17. (a) Let x be an effective character in X(G). Then x is simple
over C if and only if |x||*> = 1, or alternatively,

2 |X(@)|* = #G).

ogeG
(b) Let x, s be effective characters in X(G), and let E, F be their representation
spaces over C. Then

(x, ¥)¢ = dim Homg(E, F).

Proof.  The first part has been proved, and for (b), let y = > g;x;- Then by
orthonormality, we get

x> ¥ = Emi‘b‘-
But if E; is the representation space of ; over C, then by Schur’s lemma
dim Homg(E;, E;) = | and dim Homg(E;, E;) = O for i # j.
Hence dim Homg(E, F) = > m;q;, thus proving (b).

Corollary 5.18 With the above notation and k = C for simplicity, we have:
(a) The mulniplicity of 1 in E¥ ® F is dim, invg(EY @ F).
(b) The (G, k)-space E is simple if and only if 15 has multiplicity 1 in EY Q E.

Proof. Immediate from Theorem 5.17 and formula (3) of §1.

Remark. The criterion of Theorem 5.17(a) is useful in testing whether a
representation is simple. In practice, representations are obtained by inducing
from 1-dimensional characters, and such induced representations do have a ten-
dency to be irreducible. We shall see a concrete case in §12.
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§6. INDUCED CHARACTERS

The notation is the same as in the preceding section. However, we don’t need
all the results proved there; all we need is the bilinear pairing on X(G), and its
extension to

Xr(G) x Xg(G)— R.

The symbol { , > may be interpreted either as the bilinear extension, or the
hermitian extension according to Theorem 5.2.
Let S be a subgroup of G. We have an R-linear map called the restriction

reSg‘; . XR(G) g XR(S)

which to each class function on G associates its restriction to S. It is a ring-
homomorphism. We sometimes let f denote the restriction of fto S.
We shall define a map in the opposite direction,
ind§ : Xz(S) = Xz(G),

which we call the induction map. If g € X4(S), we extend g to gg on G by
letting gg(o) = 0 if o ¢ S. Then we define the induced function

. o .
6(0) = ind§(a)(@) = 55 gcgs(m»r .

Then indg;(g) is a class function on G. It is clear that indg; is R-linear.

Since we deal with two groups S and G, we shall denote the scalar product
by ( , >sand { , >; when it is taken with these respective groups. The next
theorem shows among other things that the restriction and transfer are adjoint
to each other with respect to our form.

Theorem 6.1. Let S be a subgroup of G. Then the following rules hold:
(i) (Frobenius reciprocity) For f € Xg(G), and g € Xg(S) we have

<1nd?(g)’ f>G = <g’ Res?(f))s

(ii) Ind§'(g)f = ind§(gfs).
(iii) If T C § C G are subgroups of G, then

ind§ © ind§ = ind§.
(iv) If 0 € G and g7 is defined by g%(1%) = g(1), where 7° = o~ 70, then
ind¢(g) = ind§%(g°).

(v) If Y is an effective character of S then ind§(y) is effective.
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Proof. Let us first prove (ii). We must show that g¢f = (gf5)¢. We have

(g%)() = (S 5 2 9s(omoHf(r) = (Sfl) 2 gs(omo (om0 !

G’EG

The last expression just obtained is equal to (gf;)¢, thereby proving (ii). Let us
sum over T in G. The only non-zero contributions in our double sum will come
from those elements of S which can be expressed in the form ¢16 ™! with g, 7 € G.
The number of pairs (o, T) such that 6o~ ! is equal to a fixed element of G is
equal to n (because for every A€ G, (64, A~ '7A) is another such pair, and the
total number of pairs is n?). Hence our expression is equal to

(G:1) 5 2 9AS ().

(S 1) ics

Our first rule then follows from the definitions of the scalar products in G and S
respectively.

Now let g = i be an effective character of S, and let f = X be a simple
character of G7 From (i) we find that the Fourier coefficients of g% are integers
= 0 because res§(y) is an effective character of S. Therefore the scalar product

(¢, res§(x)s

is = 0. Hence ¢© is an effective character of G, thereby proving (v).

In order to prove the transitivity property, it is convenient to use the fol-
lowing notation.

Let {c} denote the set of right cosets of S in G. For each right coset ¢, we

select a fixed coset representative denoted by ¢. Thus if ¢,, ..., ¢, are these
representatives, then

=Je=Sse=|)se
¢ c i=1
Lemma 6.2. Let g be a class function on S. Then

1nd5 (&) s(ece !

HM‘

Proof. We can split the sum over all o € G in the definition of the induced
function into a double sum

oeG ceS i
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and observe that each term gg(océc 'o™ 1) isequal to gg(céc ') if o € S, because
g is a class function. Hence the sum over o € S is enough to cancel the factor
1/(S : 1) in front, to give the expression in the lemma.

If T =« S < G are subgroups of G, and if
G=1|)S¢ and S=|JTd;

are decompositions into right cosets, then {d ;¢;} form a system of representatives
for the right cosets of T in G. From this the transitivity property (iii) is obvious.
We shall leave (iv) as an exercise (trivial, using the lemma).

§7. INDUCED REPRESENTATIONS

Let G be a group and § a subgroup of finite index. Let F be an S-module.
We consider the category C whose objects are S-homomorphisms ¢ : F — E of
F into a G-module E. (We note that a G-module E can be regarded as an S-
module by restriction.) If ¢’ : F— E’ is another object in €, we define a morphism
¢" — @in Cto be a G-homomorphism 7 : E' — E making the following diagram
commutative:

El

A universal object in € is determined up to a unique G-isomorphism. It will
be denoted by

ind§ : F — ind§(F).

We shall prove below that a universal object always exists. If ¢ : F - Eisa
universal object, we call E an induced module. It is uniquely determined, up to a
unique G-isomorphism making a diagram commutative. For convenience, we
shall select one induced module such that ¢ is an inclusion. We shall then call
this particular module ind§ (F) the G-module induced by F. In particular, given
an S-homomorphism ¢: F — E into a G-module E, there is a unique G-homo-
morphism ¢, : ind§(F) — E making the following diagram commutative:

iW

F ¢, = ind§(e)

Ra¥:

ind§ (F)
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The association ¢ > ind§(¢) then induces an isomorphism

Hom(ind§(F), E) = Hom(F, res¢(E)),

for an S-module F and a G-module E. We shall see in a moment that ind§ is a
functor from Mod(S) to Mod(G), and the above formula may be described as
saying that induction is the adjoint functor of restriction. One also calls this
relation Frobenius reciprocity for modules, because Theorem 6.1(i) is a
corollary.

Sometimes, if the reference to F as an S-module is clear, we shall omit the
subscript S, and write simply

ind®(F)

for the induced module.

Let f: F' - F be an S-homomorphism. If

¢ : F' — ind§(F')

is a G-module induced by F’, then there exists a unique G-homomorphism
ind§¢(F') — ind§(F) making the following diagram commutative:

F =%, ind§(F")

/'J N lind;?(f)
\N

F == ind§(F)

It is simply the G-homomorphism corresponding to the universal property
for the S-homomorphism % - f, represented by a dashed line in our diagram.
Thus ind§ is a functor, from the category of S-modules to the category of G-
modules.

From the universality and uniqueness of the induced module, we get some
formal properties:

ind§ commutes with direct sums: If we have an S-direct sum F ® F’, then
ind§(F @ F') = ind§(F) @ ind§(F"),

the direct sum on the right being a G-direct sum.

Iff,g: F' — F are S-homomorphisms, then
ind§(f + g) = ind§(f) + ind§(g).

If T < § < G are subgroups of G, and F is a T-module, then

ind§ o ind§(F) ~ ind§(F).
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In all three cases, the equality between the left member and the right member
of our equations follows at once by using the uniqueness of the universal object.
We shall leave the verifications to the reader.

To prove the existence of the induced module, we let M$(F) be the additive
group of functions f: G — F satisfying

af (&) = f(6d)
for 6 € S and £ e G. We define an operation of G on MZ(F) by letting
(af X&) = f (o)

for o, £ € G. It is then clear that M3(F) is a G-module.

Proposition 7.1. Let ¢ : F — M3(F) be such that o(x) = ¢, is the map

0 if 1¢S
wx if teSs.

0 (1) = {

Then @ is an S-homomorphism, ¢ : F — M2(F) is universal, and ¢ is injective.
The image of ¢ consists of those elements fe M3(F) such that f(t) = 0 if
T¢S.

Proof. LetoeSand xeF. Let teG. Then

(09.)(1) = @ (10).

If €S, then this last expression is equal to ¢, (7). If ¢S, then 10 ¢S, and
hence both ¢, (1) and ¢,(t6) are equal to 0. Thus ¢ is an S-homomorphism,
and it is immediately clear that ¢ is injective. Furthermore, if fe M(F) is such
that f(z) = 0if T ¢ S, then from the definitions, we conclude that f = ¢, where
x =f(1).

There remains to prove that ¢ is universal. To do this, we shall analyze more
closely the structure of M§(F).

Proposition 7.2. Let G = | | S¢; be a decomposition of G into right cosets.
i=1

Let F, be the additive group of functions in M3(F) having value 0 at elements

teG,E¢S. Then

MYF) =@ ¢ 'Fy,
i=1
the direct sum being taken as an abelian group.
Proof. For each fe M3(F), let f; be the function such that

{0 if &¢5S¢
f"@)_{f(g) if £eSé.
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For all 0 € S we have f(o¢;) = (¢; f;)(o). It is immediately clear that ¢, f; lies in
F,,and

f= Yaas

Thus ME(F) is the sum of the subgroups ¢ 'F,. It is clear that this sum is
direct, as desired.

We note that {¢1',..., ¢; !} form a system of representatives for the left
cosets of S in G. The operation of G on M&(F) is defined by the presceding direct
sum decomposition. We see that G permutes the factors transitively. The factor
F is S-isomorphic to the original module F, as stated in Proposition 7.1.

Suppose that instead of considering arbitrary modules, we start with a com-
mutative ring R and consider only R-modules E on which we have a representation
of G, i.e. a homomorphism G — Autg(F), thus giving rise to what we call a
(G, R)-module. Then it is clear that all our constructions and definitions can be
applied in this context. Therefore if we have a representation of S on an R-module
F, then we obtain an induced representation of G on indfg;(F ). Then we deal with
the category € of S-homomorphisms of an (S, R)-module into a (G, R)-module.
To simplify the notation, we may write “G-module” to mean “(G, R)-module”
when such a ring R enters as a ring of coefficients.

Theorem 7.3. Let {4,,..., 4.} be a system of left coset representatives of S in
G. There exists a G-module E containing F as an S-submodule, such that

r
E = (—B AMF
i=1
is a direct sum (as R-modules). Let ¢ : F — E be the inclusion mapping. Then
@ is universal in our category C, i.e. E is an induced module.

Proof. By the usual set-theoretic procedure of replacing F; by F in M3(F),
obtain a G-module E containing F as a S-submodule, and having the desired
direct sum decomposition. Let ¢':F — E’ be an S-homomorphism into a
G-module E'. We define

h:E—>FE
by the rule
h(/llxl + -+ Arxr) = )'l(p/(xl) + -+ Ar(Pl(xr)

for x; € F. This is well defined since our sum for E is direct. We must show that
h is a G-homomorphism. Let 6 € G. Then

oA = ’10(1‘) To,i

where a(i) is some index depending on ¢ and i, and 7, ; is an element of S, also
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depending on ¢, i. Then
h(ohix;) = h(As)T4,iX0) = Aoy @'(T4,iX))-
Since ¢’ is an S-homomorphism, we see that this expression is equal to
Aoty To,i @' (x;) = oh(4;x;).

By linearity, we conclude that h is a G-homomorphism, as desired.
In the next proposition we return to the case when R is our field .

Proposition 7.4. Let \ be the character of the representation of S on the

k-space F. Let E be the space of an induced representation. Then the character

X of E is equal to the induced character Y5, i.e. is given by the formula

28 = Y Yolcle™),

c
where the sum is taken over the right cosets c of S in G, C is a fixed coset repre-
sentative for c, and \ is the extension of Y to G obtained by setting yro(6) = 0

ifoés.
Proof. Let {w,,...,w,} be a basis for F over k. We know that

E=@c¢ 'F.

Let ¢ be an element of G. The elements {¢g~'w;}, ; form a basis for E over k.
We observe that ¢oco ! is an element of S because

Sco = Sco = S¢o.
We have
o(ta " 'w)) = ¢} (¢acT ™ w;.
Let
(¢aca™1),;

be the components of the matrix representing the effect of cacg ! on F with
respect to the basis {w,, ..., w,}. Then the action of ¢ on E is given by

a(@@ 'w;) = ¢ 1) (Coca'),;w,
u
=) (coca V), (c " w,).
u

By definition,
o) =} Y (Caca™ ).

c6=c j
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But co = c if and only if co¢~ ' € S. Furthermore,

Y(coc™ ') = ) (eac™ M)y

J
Hence

X(U) = Z WO(EUE— 1)’
(4
as was to be shown.

Remark. Having given an explicit description of the representation space
for an induced character, we have in some sense completed the more elementary
part of the theory of induced characters. Readers interested in seeing an application
can immediately read §12.

Double cosets

Let G be a group and let S be a subgroup. To avoid superscripts we use the
following notation. Let y € G. We write

[y)S = ySy™! and S[y] = vy ISy.

We shall suppose that S has finite index. We let H be a subgroup. A subset of G
of the form HyS is called a double coset. As with cosets, it is immediately
verified that G is a disjoint union of double cosets. We let {y} be a family of
double coset representatives, so we have the disjoint union

G = L:YJHyS.

For each y we have a decomposition into ordinary cosets

H= U JH N[YS),
Y
where {7,} is a finite family of elements of H, depending on y.

Lemma 7.5. The elements {7,y} form a family of left coset representatives
for S in G; that is, we have a disjoint union

G = U T,7S.

Y, Ty

Proof. First we have by hypothesis
G = L;J U ,(H N [719)yS,
and so every element of G can be written in the form
T,¥81Y 'ys; = T,ys with sy, 55, 5 € S.

On the other hand, the elements 7,y represent distinct cosets of S, because if
7,¥S = 7,¥'S, then y = v/, since the elements y represent distinct double cosets,
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whence 7, and 7., represent the same coset of ySy~!, and therefore are equal.
This proves the lemma.

Let F be an S-module. Given y € G, we denote by [y]F the [y]S-module
such that for ysy~! € [y]S, the operation is given by

ysy ! [ylx = [ylsx.

This notation is compatible with the notation that if F is a submodule of a G-
module E, then we may form +yF either according to the formal definition above,
or according to the operation of G. The two are naturally isomorphic (essentially
equal). We shall write

[y] : F— yF or [y]F

for the above isomorphism from the S-module F to the [y]S-module yF. If §,
is a subgroup of S, then by restriction F is also an S;-module, and we use [7y]
also in this context, especially for the subgroup H N [y]S which is contained in

[7]S.

Theorem 7.6. Applied to the S-module F, we have an isomorphism of H-
modules

. . S
resg o ind§ =~ P indff ngys © res};’%ms ° [v]
Lo

where the direct sum is taken over double coset representatives .

Proof. The induced module ind§(F) is simply the direct sum

ind§(F) = @ Ty YF
Y, Ty
by Lemma 7.5, which gives us coset representatives of S in G, and Theorem
7.3. On the other hand, for each vy, the module ‘

D 7,7F

Ty
is a representation module for the induced representation from HN[vy]S on yF
to H. Taking the direct sum over y, we get the right-hand side of the expression
in the theorem, and thus prove the theorem.

Remark. The formal relation of Theorem 7.6 is one which occurred in
Artin’s formalism of induced characters and L-functions; cf. the exercises and
[La 70], Chapter XII, §3. For applications to the cohomology of groups, see
[La 96]. The formalism also emerged in Mackey’s work [Ma 51], [Ma 53], which
we shall now consider more systematically. The rest of this section is due
to Mackey. For more extensive results and applications, see Curtis-Reiner
[CuR 81], especially Chapter 1. See also Exercises 15, 16, and 17.

To deal more systematically with conjugations, we make some general func-
torial remarks. Let E be a G-module. Possibly one may have a commutative ring
R such that E is a (G, R)-module. We shall deal systematically with the functors
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Homg, EV, and the tensor product. Let
A E— AE

by a R-isomorphism. Then interpreting elements of G as endomorphisms of E
we obtain a group AGA~! operating on AE. We shall also write [A]G instead of
AGA~L. Let E,, E, be (G, R)-modules. Let A, : E; — AE; be R-isomorphisms.
Then we have a natural R-isomorphism

)] MHomg(Ey, Ex)Ar ! = Homy (M By, LE,),
and especially
[A]JHomg(E, E) = HomgG(AE, AE).

As a special case of the general situation, let H, S be subgroups of G, and let
F;, F, be (H, R)- and (S, R)-modules respectively, and let o, 7 € G. Suppose
that o~ ' lies in the double coset D = HyS. Then we have an R-isomorphism

(2 Hom[a']Hﬁ[‘r]S(la-]Fls [7]F;) = Homy ﬂ[‘y]S(Fla [Y)F).

This is immediate by conjugation, writing 7= ohys withh € H, s € S, conjugating
first with [oh] ', and then observing that for se S, and an S-module F, we
have [s]S = S, and [s"']F is isomorphic to F. In light of (2), we see that the
R-module on the left-hand side depends only on the double coset. Let D be a
double coset. We shall use the notation

Mp(Fy, F,) = HomHﬂ['y]S (Fy, [VIFy)

where vy represents the double coset D. With this notation we have:

Theorem 7.7. Let H, S be subgroups of finite index in G. Let F,, F, be

(H, R) and (S, R)-modules respectively. Then we have an isomorphism of R-
modules

Home(indfi(F), ind§(F,)) = €B) Mo(Fi, ).
where the direct sum is taken over all double cosets HyS = D.
Proof. We have the isomorphisms:
Homg(ind§(F,), ind§(F,)) = Homy(F,, res§ ° ind$(F, ))
~ EyB HomH(Fl,indgmms ° resm,sms ° [yIF3)

= @ Homynys(Fy, [Y]F)
>

by applying the definition of the induced module in the first and third step, and
applying Theorem 7.6 in the second step. Each term in the last expression is
what we denoted by My(F;, F,) if y is a representative for the double coset D.
This proves the theorem.
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Corollary 7.8. Let R = k = C. Let S, H be subgroups of the finite group
G. Let D = HvyS range over the double cosets, with representatives 7. Let x
be an effective character of H and  an effective character of S. Then

(indG((), ind§())g = 2710(, [VWa s

Proof. Immediate from Theorem 5.17(b) and Theorem 7.7, taking dimen-
sions on the left-hand side and on the right-hand side.

Corollary 7.9. (Irreducibility of the induced character). Let S be a
subgroup of the finite group G. Let R = k = C. Let s be an effective character
of S. Then ind§ () is irreducible if and only if s is irreducible and

(4, [Y]lP)sn[y]s =0
forall ye G, y¢S.

Proof. Immediate from Corollary 7.8 and Theorem 5.17(a). It is of course
trivial that if ¢ is reducible, then so is the induced character.

Another way to phrase Corollary 7.9 is as follows. Let F, F' be representation
spaces for § (over C). We call F, F' disjoint if no simple S-space occurs both
in F and F'. Then Corollary 7.9 can be reformulated:

Corollary 7.9'. Let S be a subgroup of the finite group G. Let F be an
(S, k)-space (with k = C). Then ind§(F) is simple if and only if F is simple
and for all ye Gand y & S, the S N [y]S-modules F and {y]F are disjoint.

Next we have the commutation of the dual and induced representations.

Theorem 7.10. Let S be a subgroup of G and let F be a finite free R-module.
Then there is a G-isomorphism

ind§(F¥) ~ (ind§(F))" .

Proof. LetG = U A;S be a left coset decomposition. Then, as in Theorem
7.3, we can express the representation space for ind§(F) as

ind§(F) = @AF.
We may select A; = 1 (unit element of G). There is a unique R-homomorphism
f:FY = (ind§(F))
such that for ¢ € F¥ and x € F we have
0 ifi+#1l
F@O0x) = {W) i1

which is in fact an R-isomorphism of FV on (A,F)". We claim that it is an S-
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homomorphism. This is a routine verification, which we write down. We have

‘ (A)_{o ifi % 1
HAOXD = o1 i i = 1.

On the other hand, note that if o € S then 07 'A; € § so o 'A;x € A,F for
xeF,butif o ¢ S, then o7 '\; ¢ Sfori # 1 so o 'A;x ¢ AF. Hence

[a1(f(@N(X1x) = af(@)(o™"Ax) {0 il
o x)=oc o\ x) =
e ¢ ! o(e(ac X)) ifi = 1.
This proves that f commutes with the action of §.
By the universal property of the induced module, it follows that there is a
unique (G, R)-homomorphism

ind§(f) : indG(FV) — (ind§(F)),

which must be an isomorphism because f was an isomorphism on its image, the
Aj-component of the induced module. This concludes the proof of the theorem.

Theorems and definitions with Hom have analogues with the tensor product.
We start with the analogue of the definition.

Theorem 7.11. Let S be a subgroup of finite index in G. Let F be an S-
module, and E a G-module (over the commutative ring R). Then there is an
isomorphism

ind§(resg(E) ® F) ~ E ® ind§(F).

Proof. The G-module ind§ (F) contains F as a summand, because it is the
direct sum @)\ZF with left coset representatives A; as in Theorem 7.3. Hence
we have a natural S-isomorphism

f:resg(E) ® F > E QA F C E ® ind§(F).

taking the representative A; to be 1 (the unit element of G). By the universal
property of induction, there is a G-homomorphism

ind§(f) : ind§(resg(E) @ F) = E @ ind§ (F),

which is immediately verified to be an isomorphism, as desired. (Note that here
it only needed to verify the bijectivity in this last step, which comes from the
structure of direct sum as R-modules.)

Before going further, we make some remarks on functorialities. Suppose we
have an isomorphism G =~ G’, a subgroup H of G corresponding to a subgroup
H' of G’ under the isomorphism, and an isomorphism F =~ F’ from an H-module
F to an H'-module F' commuting with the actions of H, H'. Then we get an
isomorphism

ind§(F) =~ ind$.(F").
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In particular, we could take o € G, let G' = [0]G = G, H' = [o]H and
F' = [0]F.

Next we deal with the analogue of Theorem 7.7. We keep the same notation
as in that theorem and the discussion preceding it. With the two subgroups H
and §, we may then form the tensor product

[o]F; ® [71]F,

with o, 7 € G. Suppose o~ '7 € D for some double coset D = HyS. Note that
[o]F, @ [7]F, is a [o]H N [7]S-module. By conjugation we have an isomorphism

(3) ind{ynqs([01F) ® [7]F;) = indfnpys (F @ [Y1F).

Theorem 7.12. There is a G-isomorphism
ind§(F) ® ind§(Fy) = P indfn5Fy @ [YIF),
Y

where the sum is taken over double coset representatives 7.
Proof. We have:
ind§(F;) ® ind§(F,) =~ ind§(F, ® resy ind§(F,)) by Theorem 7.11

~ (P indG(F;, ® indffnps resHmR/}g([y]Fz) by Theorem 7.6
Y

=~ @ indﬁ(indznms <res;"{mms (F) @ res }}F]]S[Y]S([y]Fz ))) by Theorem 7.7
Y

~ P indfnys(Fy @ [V]F) by transitivity of induction
Y
where we view F| N [y]F, as an H N [y]S-module in this last line. This proves
the theorem.

General comment. This section has given a lot of relations for the induced
representations. In light of the cohomology of groups, each formula may be
viewed as giving an isomorphism of functors in dimension 0, and therefore gives
rise to corresponding isomorphisms for the higher cohomology groups H9. The
reader may see this developed further than the exercises in [La 96].
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The next three sections, which are essentially independent of each other, give
examples of induced representations. In each case, we show that certain
representations are either induced from certain well-known types, or are linear
combinations with integral coefficients of certain well-known types. The most
striking feature is that we obtain all characters as linear combinations of in-
duced characters arising from 1-dimensional characters. Thus the theory of
characters is to a large extent reduced to the study of 1-dimensional, or abelian
characters.

§8. POSITIVE DECOMPOSITION OF THE
REGULAR CHARACTER

Let G be a finite group and let k be the complex numbers. We let 1, be the
trivial character, and r¢ denote the regular character.

Proposition 8.1. Ler H be a subgroup of G, and let  be a character of H.
Let Y© be the induced character. Then the multiplicity of 1y in  is the same
as the multiplicity of 1 in Y©.

Proof. By Theorem 6.1 (i), we have

W, 1)y = (Y, o).
These scalar products are precisely the multiplicities in question.
Proposition 8.2. The regular representation is the representation induced
by the trivial character on the trivial subgroup of G.

Proof. This follows at once from the definition of the induced character
Yo = 2 dy(oroh),
taking ¢ = 1 on the trivial subgroup.

Corollary 8.3. The multiplicity of 15 in the regular character rg is equal to 1.

We shall now investigate the character
uG = rG - IG'

Theorem 8.4. (Aramata). The character nug is a linear combination with
positive integer coefficients of characters induced by 1-dimensional characters
of cyclic subgroups of G.

The proof consists of two propositions, which give an explicit description of
the induced characters. T am indebted to Serre for the exposition, derived from
Brauer’s.
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If A is a cyclic group of order a, we define the function 6, on A by the condi-
tions:

a if o is a generator of A

0.4(0) = {

0 otherwise.

We let A, = ¢(a)r, — 0, (where ¢ is the Euler function), and 1, = Oifa = 1.
The desired result is contained in the following two propositions.

Proposition 8.5. Let G be a finite group of order n. Then

nug = 25,
the sum being taken over all cyclic subgroups of G.

Proof. Given two class functions y,  on G, we have the usual scalar
product:

W = 3 W@,
h ceG

Let i be any class function on G. Then:

<l//’ nuG> = <'jla an> - <¢’ an>
= (1) — Y ¥(o).

ceG

On the other hand, using the fact that the induced character is the transpose of
the restriction, we obtain

D AG) = 2 (WA, Ay
A A

= ;(WA, o(@ry — 0,

Y. ay(o)

1
a agen 4

= ;WJM(I) - ;

= (1) — 3 Y(o).

ceG

Since the functions on the right and left of the equality sign in the statement of our
proposition have the same scalar product with an arbitrary function, they are
equal. This proves our proposition.

Proposition 8.6. If A # {1}, the function A, is a linear combination of ir-
reducible nontrivial characters of A with positive integral coefficients.
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Proof. 1f A is cyclic of prime order, then by Proposition 8.5, we know that
A4 = nuy, and our assertion follows from the standard structure of the regular
representation.

In order to prove the assertion in general, it suffices to prove that the Fourier
coefficients of 1, with respect to a character of degree 1 are integers = 0. Let
¥ be a character of degree 1. We take the scalar product with respect to 4, and
obtain:

Wy dgy = olap(l) — . ¥(o)

ogen

oa) — Y ¥(o)

o gen

¥ (1 = Y(o)).

o gen

I

]

The sum Y (o) taken over generators of 4 is an algebraic integer, and is in fact
a rational number (for any number of elementary reasons), hence a rational
integer. Furthermore, if i is non-trivial, all real parts of

1 = (o)

are > 0if ¢ # idand are 0if ¢ = id. From the last two inequalities, we conclude
that the sums must be equal to a positive integer. If i is the trivial character,
then the sum is clearly 0. Our proposition is proved.

Remark. Theorem 8.4 and Proposition 8.6 arose in the context of zeta
functions and L-functions, in Aramata’s proof that the zeta function of a number
field divides the zeta function of a finite extension [Ar 31], [Ar 33]. See also
Brauer [Br 47a], [Br 47b]. These results were also used by Brauer in showing
an asymptotic behavior in algebraic number theory, namely

log(hR) ~ log DV2 for [k : Q]/log D — 0,

where h is the number of ideal classes in a number field k, R is the regulator,
and D is the absolute value of the discriminant. For an exposition of this appli-
cation, see [La 70], Chapter XVI.
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§9. SUPERSOLVABLE GROUPS

Let G be a finite group. We shall say that G is supersolvable if there exists a
sequence of subgroups

{1}c6G,cG,c-- =G, =G

such that each G, is normal in G, and G, ,/G; is cyclic of prime order.
From the theory of p-groups, we know that every p-group is super-solvable,
and so is the direct product of a p-group with an abelian group.

Proposition 9.1. Every subgroup and every factor group of a super-solvable
group is supersolvable.

Proof. Obvious, using the standard homomorphism theorems.

Proposition 9.2. Let G be a non-abelian supersolvable group. Then there
exists a normal abelian subgroup which contains the center properly.

Proof. Let C be the center of G, and let G = G/C. Let H be a normal
subgroup of prime order in G and let H be its inverse image in G under the
canonical map G — G/C. If ¢ is a generator of H, then an inverse image o of G,
together with C, generate H. Hence H is abelian, normal, and contains the
center properly.

Theorem 9.3. (Blichfeldt). Let G be a supersolvable group, let k be alge-
braically closed. Let E be a simple (G, k)-space. If dim, E > 1, then there
exists a proper subgroup H of G and a simple H-space F such that E is induced
by F.

Proof. Since a simple representation of an abelian group is 1-dimensional,
our hypothesis implies that G is not abelian.

We shall first give the proof of our theorem under the additional hypothesis
that E is faithful. (This means that ox = x for all x € E implies ¢ = 1.) It will
be easy to remove this restriction at the end.

Lemma 9.4. Let G be a finite group, and assume k algebraically closed. Let
E be a simple, faithful G-space over k. Assume that there exists a normal abelian
subgroup H of G containing the center of G properly. Then there exists a
proper subgroup Hy of G containing H, and a simple H,-space F such that E
is the induced module of F from H; to G.

Proof. We view E as an H-space. It is a direct sum of simple H-spaces, and
since H is abelian, such simple H-space is 1-dimensional.

Let ve E generate a 1-dimensional H-space. Let  be its character. If
w e E also generates a 1-dimensional H-space, with the same character , then
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forall a, be k and t € H we have
t(av + bw) = Y(t)(av + bw).

If we denote by F, the subspace of E generated by all 1-dimensional H-sub-
spaces having the character y, then we have an H-direct sum decomposition

E:@F'ﬁ.

We contend that E # F,,. Otherwise,let ve E,v # 0,and 6 € G. Theno™'v
is a 1-dimensional H-space by assumption, and has character . Hence for
1€ H,

(o™ ') = Y(t)o v
(ot6™ Yo = a(t)o ™ v = Y()v.

This shows that 676! and t have the same effect on the element v of E. Since
H is not contained in the center of G, there exist te H and ¢ € G such that
016~ # 7, and we have contradicted the assumption that E is faithful.

We shall prove that G permutes the spaces F transitively.
LetveF,. Forany t€ H and g € G, we have

(ov) = a(c ™ '1o) = oo™ o) = Y, (1)ov,

where , is the function on H given by /,(t) = (6~ 'ts). This shows that ¢
maps F, into F,, . However, by symmetry, we see that ¢~ ' maps F,_into F,,
and the two maps o, 6~ ! give inverse mappings between F,_and F,. Thus G
permutes the spaces {F,}.

Let E' = GFy, = > oF,, for some fixed . Then E' is a G-subspace of E,
and since £ was assumed to be simple, it follows that E’ = E. This proves that
the spaces {F,} are permuted transitively.

Let F = F,, for some fixed y,. Then F is an H-subspace of E. Let H, be
the subgroup of all elements 1€ G such that tF = F. Then H, # G since
E # F,. We contend that F is a simple H |-subspace, and that E is the induced
space of F from H, to G.

To see this, let G = U H,¢ be a decomposition of G in terms of right cosets
of H;. Then the elements {¢”'} form a system of left coset representatives of
H,. Since

E= ) oF
ceG
it follows that
E=)c¢'F

We contend that this last sum is direct, and that F is a simple H,-space.
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Since G permutes the spaces {F,}, we see by definition that H, is the isotropy
group of F for the operation of G on this set of spaces, and hence that the elements
of the orbit are precisely {¢~1F}, as ¢ ranges over all the cosets. Thus the spaces
{¢™1F} are distinct, and we have a direct sum decomposition

E=@c¢ 'F.

If W is a proper H,-subspace of F, then @ ¢~ 'W is a proper G-subspace of E,
contradicting the hypothesis that E is simple. This proves our assertions.

We can now apply Theorem 7.3 to conclude that E is the induced module
from F, thereby proving Theorem 9.3, in case E is assumed to be faithful.

Suppose now that E is not faithful. Let G, be the normal subgroup of G
which is the kernel of the representation G — Aut,(E). Let G = G/G,. Then
E gives a faithful representation of G. As E is not 1-dimensional, then G is not
abelian and there exists a proper normal subgroup H of G and a simple H-space
F such that

E = ind%(F).

Let H be the inverse image of H in the natural map G —» G. Then H o G,,
and F is a simple H-space. In the operation of G as a permutation group of the
k-subspaces {6F},.q, we know that H is the isotropy group of one component.
Hence H is the isotropy group in G of this same operation, and hence applying
Theorem 7.3 again, we conclude that E is induced by F in G, i.e.

E = ind§(F),
thereby proving Theorem 9.3.

Corollary 9.5. Let G be a product of a p-group and a cyclic group, and let k
be algebraically closed. If E is a simple (G, k)-space and is not 1-dimensional,
then E is induced by a 1-dimensional representation of some subgroup.

Proof. We apply the theorem step by step using the transitivity of induced
representations until we get a 1-dimensional representation of a subgroup.

§10. BRAUER’'S THEOREM

We let k = C be the field of complex numbers. We let R be a subring of k.
We shall deal with X(G), i.e. the ring consisting of all linear combinations with
coefficients in R of the simple characters of G over k. (It is a ring by Proposition
2.1)
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Let H = {H,} be a fixed family of subgroups of G, indexed by indices {a}.
We let Vi(G) be the additive subgroup of X z(G) generated by all the functions
which are induced by functions in X (H,) for some H, in our family. In other
words,

Vi(G) = ginngxR(Ha)).

We could also say that V;(G) is the subgroup generated over R by all the char-
acters induced from all the H,.

Lemma 10.1.  Vi(G) is an ideal in X z(G).
Proof. This is immediate from Theorem 6.1.

For many applications, the family of subgroups will consist of “elementary”
subgroups: Let p be a prime number. By a p-elementary group we shall mean
the product of a p-group and a cyclic group (whose order may be assumed prime
to p, since we can absorb the p-part of a cyclic factor into the p-group). An
element ¢ € G is said to be p-regular if its period is prime to p, and p-singular
if its period is a power of p. Given x € G, we can write in a unique way

X =0T

where ¢ is p-singular, 7 is p-regular, and ¢, t commute. Indeed, if p"m is the period
of x, with m prime to p,then 1 = vp" + umwhence x = (x™)*(x")" and we get our
factorization. It is clearly unique, since the factors have to lie in the cyclic
subgroup generated by x. We call the two factors the p-singular and p-regular
factors of x respectively.

The above decomposition also shows:

Proposition 10.2.  Every subgroup and every factor group of a p-elementary
group is p-elementary. If S is a subgroup of the p-elementary group P x C,
where P is a p-group, and C is cyclic, of order prime to p, then

S=(8nP)yx(SnC).
Proof. Clear.

Our purpose is to show, among other things, that if our family {H,} is such that
every p-elementary subgroup of G is contained in some H,, then Vg(G) = Xx(G)
for every ring R. It would of course suffice to do it for R = Z, but for our pur-
poses, it is necessary to prove the result first using a bigger ring. The main result
is contained in Theorems 10.11 and 10.13, due to Brauer. We shall give an
exposition of Brauer-Tate (Annals of Math., July 1955).

We let R be the ring Z[{] where ( is a primitive n-th root of unity. There
exists a basis of R as a Z-module, namely 1, {, ..., (¥ ! for some integer N.
This is a trivial fact, and we can take N to be the degree of the irreducible poly-
nomial of { over Q. This irreducible polynomial has leading coefficient 1, and
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has integer coefficients, so the fact that

LE..., !

form a basis of Z[{] follows from the Euclidean algorithm. We don’t need to
know anything more about this degree N.

We shall prove our assertion first for the above ring R. The rest then follows
by using the following lemma.

Lemma 10.3. If deZ and the constant function d.1; belongs to Vi then
d.1; belongs to Vy.

Proof. Wecontend that 1,¢,...,{" ! are linearly independent over X z(G).
Indeed, a relation of linear dependence would yield

s

N-1 )
> 2 ¢ =0

v=1 j=0

with integers c,; not all 0. But the simple characters are linearly independent
over k. The above relation is a relation between these simple characters with
coeflicients in R, and we get a contradiction. We conclude therefore that

V=V, @ V(DD VzCN_l
is a direct sum (of abelian groups), and our lemma follows.

If we can succeed in proving that the constant function 14 lies in Vg(G),
then by the lemma, we conclude that it lies in Vz(G), and since Vz(G) is an ideal,
that Xz(G) = Vz(G).

To prove our theorem, we need a sequence of lemmas.

Two elements x, x’ of G are said to be p-conjugate if their p-regular factors
are conjugate in the ordinary sense. It is clear that p-conjugacy is an equivalence
relation, and an equivalence class will be called a p-conjugacy class, or simply a
p-class.

Lemma 10.4. Let fe Xi(G), and assume that f(o)€ Z for all 6 € G. Then
fis constant mod p on every p-class.

Proof. Let x = o1, where ¢ is p-singular, and t is p-regular, and o, T com-
mute. It will suffice to prove that

fx) =f(x) (mod p).

Let H be the cyclic subgroup generated by x. Then the restriction of f to H
can be written

fa=2 a¥;
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with a; € R, and y; being the simple characters of H, hence homomorphisms of
H into k*. For some power p” we have x” = 1”, whence  (x)”" = ¥ (1)”, and
hence

Sy =f( (mod pR).

We now use the following lemma.

Lemma 10.5. Let R = Z[{] be as before. If ae Z and a € pR then a € pZ.

Proof. This is immediate from the fact that R has a basis over Z such that
1 is a basis element.

Applying Lemma 10.5, we conclude that f(x) = f(r) (mod p), because
b¥" = b (mod p) for every integer b.

Lemma 10.6. Let 1 be p-regular in G, and let T be the cyclic subgroup

generated by 1. Let C be the subgroup of G consisting of all elements com-

muting witht. Let P be a p-Sylow subgroup of C. Then there exists an element

€ Xg(T X P) such that the induced function f = J& has the following properties:
(1) f(o)eZ foralloeG.

(i1) f(o) = 0 if g does not belong to the p-class of 1.

(iii) f(z) = (C: P) # 0(mod p).

Proof. We note that the subgroup of G generated by T and P is a direct pro-
duct T x P. Letys,..., ¥, be the simple characters of the cyclic group T, and
assume that these are extended to T x P by composition with the projection:

T x P—>T — k*

We denote the extensions again by ¥/, ..., ¥,. Then we let

Y= 3 0,
v=1
The orthogonality relations for the simple characters of T show that

Y(ty) = Y(t) =(T:1) for yeP
Y()=0 if oceTP, and o¢1P.

We contend that ¢/ satisfies our requirements.
First, it is clear that ¢ lies in Xz(TP).
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We have for 0 € G:

1
V@) = gy 2, dmleox™) = G @)

where (o) is the number of elements x € G such that xox~! lies in 7P. The
number u(o) is divisible by (P : 1) because if an element x of G moves ¢ into tP
by conjugation, so does every element of Px. Hence the values of ¢/ lie in Z.
Furthermore, u(o) # 0 only if ¢ is p-conjugate to t, whence our condition
(ii) follows.
Finally, we can have xtx~' = ty with y € Ponlyif y = 1 (because the period
of 7 is prime to p). Hence u(t) = (C: 1), and our condition (iii) follows.

1

Lemma 10.7. Assume that the family of subgroups {H,} covers G (i.e. every
element of G lies in some H,). If fis a class function on G taking its values in
Z, and such that all the values are divisible by n = (G : 1), then f belongs to
Vr(G).

Proof. Let y be a conjugacy class, and let p be prime to n. Every element
of G is p-regular, and all p-subgroups of G are trivial. Furthermore, p-conjugacy
is the same as conjugacy. Applying Lemma 10.6, we find that there exists in
Vx(G) a function taking the value 0 on elements o ¢ y, and taking an integral
value dividing n on elements of y. Multiplying this function by some integer, we
find that there exists a function in V3(G) taking the value n for all elements of y,
and the value 0 otherwise. The lemma then follows immediately.

Theorem 10.8. (Artin). FEvery character of G is a linear combination with
rational coefficients of induced characters from cyclic subgroups.

Proof. In Lemma 10.7, let {H,} be the family of cyclic subgroups of G. The
constant function n.1; belongs to Vx(G). By Lemma 10.3, this function belongs
to Vz(G), and hence nX,(G) = Vz(G). Hence

1
X2(G) = V(G),
thereby proving the theorem.

Lemma 10.9. Let p be a prime number, and assume that every p-elementary
subgroup of G is contained in some H,. Then there exists a function f€ Vg(G)
whose values are in Z, and = 1 (mod p").

Proof. We apply Lemma 10.6 again. For each p-class y, we can find a func-
tion f, in Vx(G), whose values are 0 on elements outside y, and # 0 mod p for
elements of y. Let f=) f,, the sum being taken over all p-classes. Then

f(o) # 0 (modp) for all ¢ € G. Taking f(”_l)"rfl gives what we want.
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Lemma 10.10. Let p be a prime number and assume that every p-elementary
subgroup of G is contained in some H,. Let n = nyp" where n is prime to p.
Then the constant function ny.14 belongs to Vg(G).

Proof. By Lemma 10.3, it suffices to prove that ng.1; belongs to Vi(G).
Let fbe as in Lemma 10.9. Then

no-lg = no(lg — f) + no f-

Since no(1g — f) has values divisible by nop” = n, it lies in Vx(G) by Lemma
10.7. On the other hand, ny f € Va(G) because f € Vix(G). This proves our lemma.

Theorem 10.11. (Brauer). Assume that for every prime number p, every
p-elementary subgroup of G is contained in some H,. Then X(G) = V4(G).
Every character of G is a linear combination, with integer coefficients, of
characters induced from subgroups H, .

Proof. Immediate from Lemma 10.10, since we can find functions ng.14 in
Vz(G) with n relatively prime to any given prime number.

Corollary 10.12. A class function f on G belongs to X(G) if and only if its
restriction to H, belongs to X(H,) for each a.

Proof. Assume that the restriction of fto H, is a character on H, for each a.
By the theorem, we can write

lg = 2 ¢q ind§ (%)

where ¢, € Z, and y, € X(H,). Hence
f= 2 ca indf],(Yafu,),

using Theorem 6.1. If f € X(H,), we conclude that f belongs to X(G). The
converse is of course trivial.

Theorem 10.13. (Brauer). Every character of G is a linear combination
with integer coefficients of characters induced by 1-dimensional characters of
subgroups.

Proof. By Theorem 10.11, and the transitivity of induction, it suffices to
prove that every character of a p-elementary group has the property stated in
the theorem. But we have proved this in the preceding section, Corollary 9.5.
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§11. FIELD OF DEFINITION OF A
REPRESENTATION

We go back to the general case of k having characteristic prime to #G. Let
E be a k-space and assume we have a representation of G on E. Let k' be an
extension field of k. Then G operates on k' &, E by the rule

oaa® x) =a® ox

for aek’ and x e E. This is obtained from the bilinear map on the product
k' x E given by

(a, x)—a® ox.

Weview E' = k' ®, E as the extension of E by k’, and we obtain a representation
of Gon E'.

Proposition 11.1.  Let the notation be as above. Then the characters of the
representations of G on E and on E’ are equal.

Proof. Let {v,,...,v,} be a basis of E over k. Then

{1®vy,....,1 ®v,}

is a basis of E’ over k'. Thus the matrices representing an element ¢ of G with
respect to the two bases are equal, and consequently the traces are equal.

Conversely, let k' be a field and k a subfield. A representation of G on a
k'-space E' is said to be definable over k if there exists a k-space E and a repre-
sentation of G on E such that E’ is G-isomorphic to k¥’ ®, E.

Proposition 11.2. Let E, F be simple representation spaces for the finite
group G over k. Let k' be an extension of k. Assume that E, F are not G-
isomorphic. Then no k'-simple component of E,. appears in the direct sum
decomposition of F,. into k'-simple subspaces.

Proof. Consider the direct product decomposition

s(k)

k[G] = D}Ru(k)

over k, into a direct product of simple rings. Without loss of generality, we may
assume that E, F are simle left ideals of k[G], and they will belong to distinct
factors of this product by assumption. We now take the tensor product with
k', getting nothing else but k¥'[G]. Then we obtain a direct product decomposi-
tion over k. Since R (k)R (k) = 0if v # p, this will actually be given by a direct
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product decomposition of each factor R, (k):

s(k) m(p)

K[G1 = ] [T Ruk).

p=1 i=1

Say E=L, and F = L, with v # u. Then R,E = 0. Hence R;E,. = 0 for
each i = 1,..., m(u). This implies that no simple component of E,. can be
G-isomorphic to any one of the simple left ideals of R,;, and proves what we
wanted.

Corollary 11.3.  The simple characters y,, ..., tsu) of G over k are linearly
independent over any extension k' of k.

Proof. This follows at once from the proposition, together with the linear
independence of the k'-simple characters over k.

Propositions 11.1 and 11.2 are essentially general statements of an abstract
nature. The next theorem uses Brauer’s theorem in its proof.

Theorem 11.4. (Brauer). Let G be a finite group of exponent m. Every
representation of G over the complex numbers (or an algebraically closed field
of characteristic 0) is definable over the field Q((,,) where {,, is a primitive
m-th root of unity.

Proof. Let y be the character of a representation of G over C, i.e. an effective
character. By Theorem 10.13, we can write

X = ch indgj(wj), ¢ €L,
J
the sum being taken over a finite number of subgroups S;, and ¢; being a 1-
dimensional character of §;. It is clear that each ; is definable over Q({,,). Thus
the induced character ¢f is definable over Q(Z,,). Each ¢ can be written

by = %djuxw dy € 7

where {y,} are the simple characters of G over Q({,,). Hence
=X (St
g o\ Jj

The expression of y as a linear combination of the simple characters over k is
unique, and hence the coefficient

Z Cj dju
J

is = 0. This proves what we wanted.
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§12. EXAMPLE: GL, OVER A FINITE FIELD

Let F be a field. We view GL,(F) as operating on the 2-dimensional
vector space V = F2. We let F? be the algebraic closure as usual, and we let
V@ = F2 X F2 = F2 @ V (tensor product over F). By semisimple, we always
mean absolutely semisimple, i.e. semisimple over the algebraic closure F2. An
element & € GL,(F) is called semisimple if V2 is semisimple over F?[«a]. A sub-
group is called semisimple if all its elements are semisimple.

Let K be a separable quadratic extension of F. Let {w,, w,} be a basis of K.
Then we have the regular representation of K with respect to this basis, namely
multiplication representing K* as a subgroup of GL,(F). The elements of norm
1 correspond precisely to the elements of SL,(F) in the image of K*. A different
choice of basis of K corresponds to conjugation of this image in GL,(F). Let Cg
denote one of these images. Then Cy is called a non-split Cartan subgroup.
The subalgebra

F[Ck] C Maty(F)

is isomorphic to K itself, and the units of the algebra are therefore the elements
of Cx = K*.

Lemma 12.1. The subgroup Cy is a maximal commutative semisimple
subgroup.

Proof. If a € GL,(F) commutes with all elements of Cg then « must lie in
F[Ck], for otherwise {1, a} would be linearly independent over F[Ck], whence
Mat,(F) would be commutative, which is not the case. Since « is invertible, «
is a unit in F[Cg], so a € Cg, as was to be shown.

By the split Cartan subgroup we mean the group of diagonal matrices

a 0\
( )thh a, d e F*.
0 d

We denote the split Cartan by A, or A(F) if the reference to F is needed.
By a Cartan subgroup we mean a subgroup conjugate to the split Cartan or
to one of the subgroups Cg as above.

Lemma 12.2. Every maximal commutative semisimple subgroup of GL,(F)
is a Cartan subgroup, and conversely.

Proof. 1t is clear that the split Cartan subgroup is maximal commutative
semisimple. Suppose that H is a maximal commutative semisimple subgroup of
GL,(F). If H is diagonalizable over F, then H is contained in a conjugate of the
split Cartan. On the other hand, suppose H is not diagonalizable over F. It is
diagonalizable over the separable closure of F, and the two eigenspaces of
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dimension 1 give rise to two characters
U ¥ H—F

of H in the multiplicative group of the separable closure. For each element
a € H the values ¥(a) and ¢'(«) are the eigenvalues of «, and for some element
a € H these eigenvalues are distinct, otherwise H is diagonalizable over F.
Hence the pair of elements ¢(a), §/'(a) are conjugate over F. The image y(H)
is cyclic, and if (a) generates this image, then we see that () generates a
quadratic extension K of F. The map

a > Y(a) witha e H

extends to an F-linear mapping, also denoted by ¢, of the algebra F{H] into K.
Since F[H] is semisimple, it follows that ¢ : F[H] — K is an isomorphism.
Hence 4 maps H into K*, and in fact maps H onto K* because H was taken to
be maximal. This proves the lemma.

In the above proof, the two characters ¢, §' are called the (eigen)characters
of the Cartan subgroup. In the split case, if « has diagonal elements, a, d then
we get the two characters such that ¢(a) = a and ¢'(@) = d. In the split case,
the values of the characters are in F. In the non-split case, these values are
conjugate quadratic over F, and lie in K.

Proposition 12.3. Let H be a Cartan subgroup of GL,(F) (split or not). Then
H is of index 2 in its normalizer N(H).

Proof. We may view GL,(F) as operating on the 2-dimensional vector space
V2 = F2 @ F?, over the algebraic closure £2. Whether H is split or not, the
eigencharacters are distinct (because of the separability assumption in the non-
split case), and an element of the normalizer must either fix or interchange the
eigenspaces. If it fixes them, then it lies in H by the maximality of H in Lemma
12.2. If it interchanges them, then it does not lie in H, and generates a unique
coset of N/H, so that H is of index 2 in N.

In the split case, a representative of N/A which interchanges the eigenspaces

is given by
(i o
w = .
10

In the non-split case, let o: K — K be the non-trivial automorphism. Let
{a, oa} be a normal basis. With respect to this basis, the matrix of o is precisely

the matrix
(i o)
w = .
1 0

Therefore again in this case we see that there exists a non-trivial element in the
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normalizer of A. Note that it is immediate to verify the relation
M(oM(x)M(o™") = M(0ox),

if M(x) is the matrix associated with an element x € K.
Since the order of an element in the multiplicative group of a field is prime
to the characteristic, we conclude:

If F has characteristic p, then an element of finite order in GL,(F) is semisimple
if and only if its order is prime to p.

Conjugacy classes

We shall determine the conjugacy classes explicitly. We specialize the sit-
uation, and from now on we let:

F = finite field with g elements;

G = GLy(F);

Z = center of G;

A = diagonal subgroup of G;

C =~ K* = a non-split Cartan subgroup of G.

Up to conjugacy there is only one non-split Cartan because over a finite field
there is only one quadratic extension (in a given algebraic closure F?) (cf.
Corollary 2.7 of Chapter XIV). Recall that

#(G) = (¢° — D@ — 9) = q(q + (g — 1%

This should have been worked out as an exercise before. Indeed, F X F has ¢°
elements, and #(G) is equal to the number of bases of F X F. There are ¢*> — 1
choices for a first basis element, and then g*> — g choices for a second (omitting
(0, 0) the first time, and all chosen elements the second time). This gives the
value for #(G).

There are two cases for the conjugacy classes of an element o.

Case 1. The characteristic polynomial is reducible, so the eigenvalues lie
in F. In this case, by the Jordan canonical form, such an element is conjugate
to one of the matrices

a 0 a 1 a 0 .
( ), < ), ( ) with d # a.
0 a 0 a 0 d

These are called central, unipotent, or rational not central respectively.

Case 2. The characteristic polynomial is irreducible. Then « is such that
Fla] = E, where E is the quadratic extension of F of degree 2. Then {1, a} is
a basis of F[a] over F, and the matrix associated with « under the representation
by multiplication on F[e«] is

2
1 —a/)’
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where a, b are the coefficients of the characteristic polynomial X> + ax + b.
We then have the following table.

Table 12.4

class # of classes # of elements in the class

oo | o |
)

(al 1 2
0 a q q
(a 0> 1
0 d 3@ =g =2 ¢ +q
witha #d
1 2
aeC — F* 5@ = Dq q°-—q

In each case one computes the number of elements in a given class as the index
of the normalizer of the element (or centralizer of the element). Case 1 is trivial.
Case 2 can be done by direct computation, since the centralizer is then seen to

consist of the matrices
x
( y), xeF,
0 x

with x # 0. The third and fourth cases can be done by using Proposition 12.3.
As for the number of classes of each type, the first and second cases correspond
to distinct choices of a € F* so the number of classes is ¢ — 1 in each case. In
the third case, the conjugacy class is determined by the eigenvalues. There are
q — 1 possible choices for a, and then g — 2 possible choices for d. But the
non-ordered pair of eigenvalues determines the conjugacy class, so one must
divide (¢ —1)(¢ —2) by 2 to get the number of classes. Finally, in the case
of an element in a non-split Cartan, we have already seen that if o generates
Gal(K/F), then M(ox) is conjugate to M(x) in GLy(F). But on the other
hand, suppose x, x” € K* and M(x), M(x") are conjugate in GL,(F) under a given
regular representation of K* on K with respect to a given basis. Then this
conjugation induces an F-algebra isomorphism on F[Ck], whence an automor-
phismof K, which is the identity, or the non-trivial automorphism o. Consequently
the number of conjugacy classes for elements of the fourth type is equal to

#K) — #(F) _q*—q
2 2

which gives the value in the table.
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Borel subgroup and induced representations
We let:

1 b
U = group of unipotent elements <O 1);
B = Borel subgroup = UA = AU.

Then #(B) = q(¢ — 1)*> = (¢ — 1)(¢*> — q). We shall construct representations
of G by inducing characters from B, and eventually we shall construct all irre-
ducible representations of G by combining the induced representations in a suitable
way. We shall deal with four types of characters. Except in the first type, which
is 1-dimensional and therefore obviously simple, we shall prove that the other
types are simple by computing induced characters. In one case we need to subtract
a one-dimensional character. In the other cases, the induced character will turn
out to be simple. The procedure will be systematic. We shall give a table of
values for each type. We verify in each case that for the character y which we
want to prove simple we have

2 |x(®)? = #G),
BeG

and then apply Theorem 5.17(a) to get the simplicity. Once we have done this
for all four types, from the tables of values we see that they are distinct. Finally,
the total number of distinct characters which we have exhibited will be equal to
the number of conjugacy classes, whence we conclude that we have exhibited
all simple characters.

We now carry out this program. I myself learned the simple characters of
GL,(F) from a one-page handout by Tate in a course at Harvard, giving the
subsequent tables and the values of the characters on conjugacy classes. I filled
out the proofs in the following pages.

First type

w : F* — C* denotes a homomorphism. Then we obtain the character

o det: G — C*,
which is 1-dimensional. Its values on representatives of the conjugacy classes
are given in the following table.

Table 12.5(1)

<a 0) (a 1) (a 0) C — F*
X 0 al|\0o o | \o daral®F

podet | p@? | pa)? plad) p o det(a)
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The stated values are by definition. The last value can also be written

p(det @) = u(Ngp(a)),
viewing « as an element of K*, because the reader should know from field theory
that the determinant gives the norm.
A character of G will be said to be of first type if it is equal to u © det for
some . There are ¢ — 1 characters of first type, because #(F*) = q — 1.
Second type

Observe that we have B/U = A. A character of A can therefore be viewed
as a character on B via B/U. We let:

Y, = res,(u o det), and view ¢, therefore as a character on B. Thus

u(® %) = piaa.
Mo d

We obtain the induced character
¥§ = ind§(y,).

Then S is not simple. It contains  © det, as one sees by Frobenius reciprocity:

1 '
MB;?'M odet(B)|" =1.

Characters y = u,bﬁ — o det will be called of second type.

<indgl//,uﬂ ° det>G = <l///“ﬂ ° det>B =

The values on the representatives of conjugacy classes are as follows.

Table 12.5(1I)

<a 0) (a 1) <a 0)
X aeC — F*
0 a 0 a 0 d/d+a

YG — podet | gu(a)? 0 w(ad) —p © det(a)

Actually, one computes the values of G, and one then subtracts the value of
@ o det. For this case and the next two cases, we use the formula for the induced
function:

ind%(¢)(@) = ;(IH—) 2 euBap™)

where ¢y is the function equal to ¢ on H and 0 outside H. An element of the
center commutes with all B € G, so for ¢ = ¢, the value of the induced character
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on such an element is

#G)

#(B)M(a)2 = (¢ + Dup(a)?,

which gives the stated value.
1
For an element u = <g ), the only elements 8 € G such that BuB~! lies
a
in B are the elements of B (by direct verification). It is then immediate that
ind§(y )(“ 1) = u(ay’
B\%n 0 a 12 ’
which yields the stated value for the character y. Using Table 12.4, one finds
at once that >, | x(8)|? = #(G), and hence;
A characrer x of second type is simple.
The table of values also shows that there are ¢ — 1 characters of second type.
The next two types deal especially with the Cartan subgroups.
Third type

¢ : A — C* denotes a homomorphism.

As mentioned following Proposition 12.3, the representative w = w, = w™! for
N(A)/A is such that

6 =6 o= ira=(5 o)
w w= =¥ fa= .
0 d 0 a 0 d

Thus conjugation by w is an automorphism of order 2 on A. Let [w]y be the
conjugate character; that is, ([w]y}a) = Y(waw) = P(a*) for @ € A. Then
[w](u o det) = p o det. The characters u o det on 4 are precisely those which are
invariant under [w]. The others can be written in the form

o5 g) vl

with distinct characters ¢, ¢,: F* — C*. In light of the isomorphism
B/U = A, we view ¢ has a character on B. Then we form the induced character

¥¢ = ind§(¢) = indF([wly).

With ¢ such that [w]g # i, the characters y = © will be said to be of the
third type. Here is their table of values.
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Table 12.5(I1I)

(a O) (a 1) _(a 0) cC - F*
X 0 a 0 a *= 0 d/d+a “

wG
bty | @ DE@ | Y@ | )+ a) 0

The first entry on central elements is immediate. For the second, we have already
seen that if 8 € G is such that conjugating

o len

then B € B, and so the formula

_ 1 :
V@ = gy 2, VoBaB™

immediately gives the value of ¢ on unipotent elements. For an element of A
with a # d, there is the additional possibility of the normalizer of A with the
elements w, and the value in the table then drops out from the formula. For
elements of the non-split Cartan group, there is no element of G which conjugates
them to elements of B, so the value in the last column is 0.

We claim that a character x = ¢© of third type is simple.

The proof again uses the test for simplicity, i.e. that 2, | x(8)|2 = #(G). Observe
that two elements «, a’ € A are in the same conjugacy class in G if and only if
o' = aor a' = [w]a. This is verified by brute force. Therefore, writing the
sum 2, | ¢/9(B)|? for B in the various conjugacy classes, and using Table 12.4,
we find:

BEG |WSB)|2 = (g + DXg — 1)
t@-D@E-D+@+q9 2 e+ pa|?
ac(A—F*)w

The third term can be written
1
3@+ 2 (@) + daWah + da )

1
=@+ 2 (1+ 1+ @ ™)+ yarh).
acA-F*

We write the sum over « € A — F* as a sum for ¢ € A minus the sum for
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a € F* If a € F* then a!™ = o*~! = 1. By assumption on ¢, the character
at> Ylal™") fora € A

is non-trivial, and therefore the sum over « € A is equal to 0. Therefore, putting
these remarks together, we find that the third term is equal to

3@+ @2Ag = D2 = 2g = 1) — 2g = D] = g(¢* = (g — 3.
Hence finally
2 OB = g+ D@> = D+ (g~ Dg> = D+ qg>= Dig = 3)

=q(@ — D(¢g® — 1) = #(G),
thus proving that € is simple.

Finally we observe that there are %(q — 1)(¢ — 2) characters of third type.
This is the number of characters ¢ such that [w]¢ # ¢, divided by 2 because
each pair ¢ and [w]4 yields the same induced character ¢©. The table of values
shows that up to this coincidence, the induced characters are distinct.

Fourth type

@ : K* = C* denotes a homomorphism, which is viewed as a character on
C = CK'

By Proposition 12.3, there is an element w € N(C) but w ¢ C, w = w™!. Then
a > waw = [wla

is an automorphism of C, but x > wxw is also a field automorphism of
F[C] = K over F. Since [K : F] = 2, it follows that conjugation by w is the auto-
morphism « > a?. As a result we obtain the conjugate character [w]# such that

(w]6) (@) = 8([wla) = 6(a™),
and we get the induced character
66 = ind%(0) = ind%([w]0).
Let u : F* — C* denote a homomorphism as in the first type. Let:

A : F* — C* be a non-trivial homomorphism.
(p, A) = the character on ZU such that

a dax
(s )t)((O )) = w(a)A(x).
a

(, ) = indGy(u, A).
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A routine computation of the same nature that we have had previously gives the
following values for the induced characters 8¢ and (u, A)C.

a 0 a 1 a O
S I v I P P OO LR
0 a 0 a 0 d/d+a

0% | (@ — 9ba) 0 0 6(a) + 0(a™)

(w, M9 | (¢* = Du(a) | —pla) 0 0

These are intermediate steps. Note that a direct computation using Frobenius
reciprocity shows that 8¢ occurs in the character (res 6, MG, where the restriction
res @ is to the group F*, so res 8 is one of our characters u. Thus we define:

0" = (res B, A)° — 6% = ([w]0),

which is an effective character. A character #' is said to be of fourth type if 0
is such that 6 + [w]0. These are the characters we are looking for. Using the
intermediate table of values, one then finds the table of values for those characters
of fourth type.

Table 12.5(1V)

a 0 a 1 a O
oo |6 |6 dara| @
0 a 0 a 0 d/d+a

0'
0+ [w]é

(g — Do) | —6(a) 0 —0(e) — 6(a")

We claim that the characters 0' of fourth type are simple.
To prove this, we evaluate

2 10BP =@~ DX =D+ (g - D= D

+3@ -9 3 6@ + @)

eK*—-F*

We use the same type of expansion as for characters of third type, and the final
value does turn out to be #(G), thus proving that 8’ is simple.

The table also shows that there are%#(C —F¥) = %(q2 — g) distinct characters
of fourth type. We thus come to the end result of our computations.
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Theorem 12.6. The irreducible characters of G = GL(F) are as follows.

number of

type that type dimension
I M e det qg—1 1
|| ¢G — o det qg—1 q

III | ¢ from pairs ¢ # [w] %(q - 1g -2 q+t1

IV | 6 from pairs 6 # [w]6 %(q - g qg—1

Proof.

We have exhibited characters of four types. In each case it is imme-

diate from our construction that we get the stated number of distinct characters
of the given type. The dimensions as stated are immediately computed from the
dimensions of induced characters as the index of the subgroup from which we
induce, and on two occasions we have to subtract something which was needed
to make the character of given type simple. The end result is the one given in
the above table. The total number of listed characters is precisely equal to the
number of classes in Table 12.4, and therefore we have found all the simple

characters,

thus proving the theorem.

EXERCISES

1. The group S;. Let S; be the symmetric group on 3 elements,

(a)
(b)
(©)

(@

Show that there are three conjugacy classes.

There are two characters of dimension 1, on §5/A;.

Let d; (i = 1, 2, 3) be the dimensions of the irreducible characters. Since
>.d? = 6, the third irreducible character has dimension 2. Show that
the third representation can be realized by considering a cubic equation
X3 + aX + b = 0, whose Galois group is S; over a field k. Let V be the k-
vector space generated by the roots. Show that this space is 2-dimensional
and gives the desired representation, which remains irreducible after tensoring
with k2.

Let G = S,. Write down an idempotent for each one of the simple components
of C[G]. What is the multiplicity of each irreducible representation of G in
the regular representation on C[G]?



XVIII, Ex

EXERCISES 723

2. The groups S, and A4. Let S, be the symmetric group on 4 elements.

(@)
(b)

(©)

(d)

Show that there are 5 conjugacy classes.

Show that A, has a unique subgroup of order 4, which is not cyclic, and
which is normal in §,. Show that the factor group is isomorphic to S5, so
the representations of Exercise 1 give rise to representations of S,.

Using the relation >, d ? = #(S,) = 24, conclude that there are only two other
irreducible characters of S,, each of dimension 3.

Let X* + a,X? + a;X + a, be an irreducible polynomial over a field k, with
Galois group S,. Show that the roots generate a 3-dimensional vector space
V over k, and that the representation of S, on this space is irreducible, so

. we obtain one of the two missing representations.

(e

)
(@

Let p be the representation of (d). Define p’ by
p'(0) = p(o) if o is even;
p'(c) = —p(o) if o is odd.

Show that p’ is also irreducible, remains irreducible after tensoring with k2,
and is non-isomorphic to p. This concludes the description of all irreducible
representations of S,.

Show that the 3-dimensional irreducible representations of S, provide an
irreducible representation of A,.

Show that all irreducible representations of A, are given by the representations
in (f) and three others which are one-dimensional.

3. The quaternion group. Let Q = {*1, £x, £y, *z} be the quaternion group, with

x2=y2=z

(a)

(b)

©

2= —landxy = —yx, xz = —zx, yz = —zy.

Show that @ has 5 conjugacy classes.

Let A = {*1}. Then Q/A is of type (2, 2), and hence has 4 simple characters,
which can be viewed as simple characters of Q.

Show that there is only one more simple character of Q, of dimension 2.
Show that the corresponding representation can be given by a matrix rep-
resentation such that

as(y ) = (23 mae (0 )
PX~O_l.,p(y) —10’p(z)_i0'

Let H be the quaternion field, i.e. the algebra over R having dimension 4,
with basis {1, x, y, z} as in Exercise 3, and the corresponding relations as
above. Show that C @ gH =~ Mat,(C) (2 X 2 complex matrices). Relate this
to (b).

4. Let S be a normal subgroup of G. Let  be a simple character of S over C. Show
that ind§(y) is simple if and only if ¢ = [o]¢ for all o € S.

5. Let G be a finite group and S a normal subgroup. Let p be an irreducible representation
of G over C. Prove that either the restriction of pto S has all its irreducible components
S-isomorphic to each other, or there exists a proper subgroup H of G containing S
and an irreducible representation 6 of H such that p = ind§(6).

6. Dihedral group D,,. There is a group of order 2n (n even integer = 2) generated
by two elements o, 7 such that
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o"=1,72=1, and 7or = o

It is called the dihedral group.
(a) Show that there are four representations of dimension 1, obtained by the four
possible values =1 for ¢ and 7.
(b) Let C, be the cyclic subgroup of D,, generated by o. For each integer
r=20,...,n — 1let ¢, be the character of C, such that

V,(6) =¢" ({ = prim. n-th root of unity)

Let x, be the induced character. Show that y, = x,_,.
(c) Show that for 0 < r < n/2 the induced character , is simple, of dimension

2, and that one gets thereby <% - 1) distinct characters of dimension 2.
(d) Prove that the simple characters of (a) and (c) give all simple characters of

Dzn‘

7. Let G be a finite group, semidirect product of A, H where A is commutative and

10.

normal. Let A* = Hom(A, C*) be the dual group. Let G operate by conjugation on
characters, so that for 0 € G, a € A, we have

[a1¥(a) = ¢(o"ao).

Let 4, ..., ¢, be representatives of the orbits of H in A®, and let H(i=1,...,7)
be the isotropy group of ;. Let G; = AH;.
(a) For a € A and k € H,, define Y,(ah) = Y, (a). Show that ¢; is thus extended
to a character on G;.
Let 6 be a simple representation of H; (on a vector space over C). From
H, = G,;/A, view 0 as a simple representation of G;. Let

pie = indg(Y; ® 6).

(b) Show that p; 4 is simple.

(c) Show that p; 4 = p;., implies i = i’ and 6 = 6.

(d) Show that every irreducible representation of G is isomorphic to some p, 4
Let G be a finite group operating on a finite set S. Let C[S] be the vector space
generated by S over C. Let ¢ be the character of the corresponding representation
of G on C[S].

(a) Let o € G. Show that Y(o) = number of fixed points of o in S.

(b) Show that (i, 15)¢ is the number of G-orbits in S.

Let A be a commutative subgroup of a finite group G. Show that every irreducible
representation of G over C has dimension = (G : A).

Let F be a finite field and let G = SL,(F). Let B be the subgroup of G consisting of
all matrices

(a b) € SL,(F), sod = a!

a= ,s0d=a"l.

0 d 2

Let p : F* — C* be a homomorphism and let ¢, : B — C* be the homomorphism

such that ,(a) = p(a). Show that the induced character indg(d/u) is simple if
2
pt#F 1.



XVIil, Ex EXERCISES 725

1.

12.

13.

14.

15.

16.

17.

Determine all simple characters of SL,(F), giving a table for the number of such
characters, representatives for the conjugacy classes, as was done in the text for GL,,
over the complex numbers.

Observe that A5 =~ SL,(F,) = PSL,(Fs). As a result, verify that there are 5 conjugacy
classes, whose elements have orders 1, 2, 3, 5, 5 respectively, and write down
explicitly the character table for A5 as was done in the text for GL,.

Let G be a p-group and let G — Aut(V) be a representation on a finite dimensional
vector space over a field of characteristic p. Assume that the representation is irre-
ducible. Show that the representation is trivial, i.e. G acts as the identity on V.

Let G be a finite group and let C be a conjugacy class. Prove that the following two
conditions are equivalent. They define what it means for the class to be rational.
RAT 1. For all characters y of G, x(o) € Q for o € C.
RAT 2. For all o € C, and j prime to the order of o, we have o/ € C.

Let G be a group and let H|, H, be subgroups of finite index. Let p,, p, be repre-
sentations of H,, H, on R-modules F,, F, respectively. Let M(F,, F,) be the R-
module of functions f: G — Homg(F,, F,) such that

f(hyohy) = py(hy)f(0)py(hy)
forall o € G, h; € H; (i = 1, 2). Establish an R-module isomorphism
Homg(F¢, F$) > My(F,, F,).

By F¢ we have abbreviated ind§ (F,).

(a) Let Gy, G, be two finite groups with representations on C-spaces E;, E,. Let
E, ® E, be the usual tensor product over C, but now prove that there is an action
of G| X G, on this tensor product such that

(o, ))(x ®y) = 0x ® o,y for oy € Gy, 0, € G,.

This action is called the tensor product of the other two. If p,, p, are the
representations of G, G, on E|, E, respectively, then their tensor product is
denoted by p, ® p,. Prove: If p,, p, are irreducible then p, ® p, is also irreducible.
[Hint: Use Theorem 5.17.]

(b) Let x;, x, be the characters of p;, p, respectively. Show that y, ® y, is the
character of the tensor product. By definition,

X1 @ x2(0, 03) = xi1(ay) xa(07).

With the same notation as in Exercise 16, show that every irreducible representation
of G; X G, over C is isomorphic to a tensor product representation as in Exercise
16. [Hint: Prove that if a character is orthogonal to all the products y; ® x, of
Exercise 16(b) then the character is 0.]

Tensor product representations

18.

Let P be the non-commutative polynomial algebra over a field k, in n variables. Let
Xy, ..., X, be distinct elements of P, (i.e. linear expressions in the variables ¢4, ..., t,)
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19.

20.

21.

22.

23.

and let a,,...,a,ek If
axy+ - +ax=0

for all integers v =1,...,r show that ¢;=0 for i=1,...,r. [Hint: Take the
homomorphism on the commutative polynomial algebra and argue there.]

Let G be a finite set of endomorphisms of a finite-dimensional vector space E over the
field k. For each o € G, let ¢, be an element of k. Show that if

Y ¢, T(6) =0

oeG

for allintegers r = 1,thenc, = Oforallo € G. [Hint: Use the preceding exercise, and
Proposition 7.2 of Chapter XVI.]

(Steinberg). Let G be a finite monoid, and k[G] the monoid algebra over a field k. Let
G — End,(E) be a faithful representation (i.e. injective), so that we identify G with a
multiplicative subset of End,(E). Show that T" induces a representation of G on T'(E),
whence a representation of k[G] on T'(E) by linearity. If « € k[G] and if T"(a) = O for
all integers r = 1, show that « = 0. [Hint: Apply the preceding exercise. ]

(Burnside). Deduce from Exercise 20 the following theorem of Burnside: Let G be
a finite group, k a field of characteristic prime to the order of G, and E a finite
dimensional (G, k)-space such that the representation of G is faithful. Then every
irreducible representation of G appears with multiplicity = 1 in some tensor power
T7(E).

Let X(G) be the character ring of a finite group G, generated over Z by the simple
characters over C. Show that an element f € X(G) is an effective irreducible character
if and only if (f, f)¢ = 1 and f(1) = 0.

In this exercise, we assume the next chapter on alternating products. Let p be an
irreducible representation of G on a vector space E over C. Then by functoriality we
have the corresponding representations S’(p) and /\’(p) on the r-th symmetric power
and r-th alternating power of E over C. If y is the character of p, we let §"(x) and
/N(x) be the characters of S"(p) and /\'(p) respectively, on S”(E) and /\'(E). Let ¢
be a variable and let

o) = ZO STO0r, A = ZO N

(a) Comparing with Exercise 24 of Chapter XIV, prove that for x € G we have
o ()x) = detd — p(x)r)~! and A () = detd + p(x)1).
(b) For a function f on G define ¥*(f) by ¥"(f)(x) = f(x™). Show that

d - d -
~Zlog o) = 2 Pt and —log A_(Y) = 2 (0"
dt n=1 dt n=1
(c) Show that

nS"(x) = 21 V(S (x) and  n/\'(x) = 21 (=D W)
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24.

25.

26.

Let x be a simple character of G. Prove that W"(y) is also simple. (The characters
are over C.)

We now assume that you know §3 of Chapter XX.
(a) Prove that the Grothendieck ring defined there for Modo(G) is naturally
isomorphic to the character ring X(G).
(b) Relate the above formulas with Theorem 3.12 of Chapter XX.
(c) Read Fulton-Lang’s Riemann-Roch Algebra, Chapter I, especially §6, and
show that X(G) is a A-ring, with ¥" as the Adams operations.

Note. For further connections with homology and the cohomology of groups, see
Chapter XX, §3, and the references given at the end of Chapter XX, §3.

The following formalism is the analogue of Artin’s formalism of L-series in number
theory. Cf. Artin’s “Zur Theorie der L-Reihen mit allgemeinen Gruppenchar-
akteren”, Collected papers, and also S. Lang, ““L-series of a covering”’, Proc. Nat.
Acad. Sc. USA (1956). For the Artin formalism in a context of analysis, see J. Jor-
genson and S. Lang, “Artin formalism and heat kernels”, J. reine angew. Math. 447
(1994) pp. 165-200.

We consider a category with objects {U}. As usual, we say that a finite group G
operates on U if we are given a homomorphism p : G — Aut(U). We then say that Uis a
G-object, and also that p is a representation of G in U. We say that G operates trivially
if p(G) = id. For simplicity, we omit the p from the notation. By a G-morphism
f:U — V between G-objects, one means a morphism such thatfo ¢ = g0 fforallg € G.

We shall assume that for each G-object U there exists an object U/G on which G
operates trivially, and a G-morphism 7y ;: U — U/G having the following universal
property: If f: U — U’ is a G-morphism, then there exists a unique morphism

f/G:U/G - U'/G
making the following diagram commutative:

U___f_,U’

|

U/G —— U'[G

In particular, if H is a normal subgroup of G, show that G/H operates in a natural way
on U/H.

Let k be an algebraically closed field of characteristic 0. We assume given a functor
E from our category to the category of finite dimensional k-spaces. If U is an object in
our category, and f: U — U’ is a morphism, then we get a homomorphism

E(f) = f4: E(U) - E(U").

(The reader may keep in mind the special case when we deal with the category of
reasonable topological spaces, and E is the homology functor in a given dimension.)

If G operates on U, then we get an operation of G on E(U) by functoriality.

Let U be a G-object, and F: U » U a G-morphism. If Px(t) = [] (t — o) is the
characteristic polynomial of the linear map F, : E(U) —» E(U), we define

Zi(n) =10 = 1),
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and call this the zeta function of F. If F is the identity, then Zx(t) = (1 — £)®? where
we define B(U) to be dim, E(U).

Let y be a simple character of G. Letd, be the dimension of the simple representation
of G belonging to y, and n = ord(G). We define a linear map on E(U) by letting

d
e, =2 xc™Yo,.

N seG
Show that e2 = e,, and that for any positive integer u we have (e, o F, ) = e, o F}.
IfP(t) = I1¢-8 (1)) is the characteristic polynomial of e, - F, define

LF(t7 X U/G) = H (1 - ﬁ;(X)t)

Show that the logarithmic derivative of this function is equal to

1 =
- ‘ﬁ Z tr(eoni)t”_l.

p=1

Define Li(t, 3, U/G) for any character y by linearity. If we write ¥ = U/G by abuse of
notation, then we also write Lg(t, x, U/V). Then for any y, ¥’ we have by definition,

Le(t, x + 1, U/V) = Le(t, 1, U/V)Le(t, 1, U/V).

We make one additional assumption on the situation:
Assume that the characteristic polynomial of

1
- ) o,°F
nagG * *

is equal to the characteristic polynomial of F/G on E(U/G). Prove the following statement:
(a) If G = {1} then
Lg(t, 1, U/U) = Zg).

(b) Let V = U/G. Then
Le(t, 1, U/V) = Zx(0).

(c) Let H be a subgroup of G and let y be a character of H. Let W = U/H, and let
¥C be the induced character from H to G. Then

LF(t’ d” U/W) = LF(t’ l/IG’ U/V)

(d) Let H be normal in G. Then G/H operates on U/H = W. Let y be a character
of G/H, and let y be the character of G obtained by composing y with the
canonical map G — G/H. Let ¢ = F/H be the morphism induced on

UH=W.
Then
Lq)(t’ W, W/V) = Le(t, 1 u/mwv).

(&) If V= U/G and B(V) = dim, E(V), show that (1 — £)®" divides (1 — £)?¥.
Use the regular character to determine a factorization of (1 — £)#),
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27. Do this exercise after you have read some of Chapter VII. The point is that for fields
of characteristic not dividing the order of the group, the representations can be obtained
by “reducing modulo a prime”. Let G be a finite group and let p be a prime not
dividing the order of G. Let F be a finite extension of the rationals with ring of
algebraic integers 0. Suppose that F is sufficiently large so that all F-irreducible
representations of G remain irreducible when tensored with Q* = F2, Let p be a
prime of o, lying above p, and let o, be the corresponding local ring. '

(a) Show that an irreducible (G, F)-space V can be obtained from a (G,op)-
module E free overop, by extending the base fromoy to F, i.e. by tensoring
so that V = E & F (tensor product over op).

(b) Show that the reduction mod p of E is an irreducible representation of G in
characteristic p. In other words, let k =0 /p = 0p/my where my is the maximal
ideal of op. Let E(p) = E & k (tensor product over op). Show that G operates
on E(p) in a natural way, and that this representation is irreducible. In fact,
if yx is the character of G on V, show that y is also the character on E, and
that y mod my is the character on E(p).

(c) Show that all irreducible characters of G in characteristic p are obtained as
in (b).



CHAPTER XIX
The Alternating Product

The alternating product has applications throughout mathematics. In differ-
ential geometry, one takes the maximal alternating product of the tangent space
to get a canonical line bundle over a manifold. Intermediate alternating products
give rise to differential forms (sections of these products over the manifold). In
this chapter, we give the algebraic background for these constructions.

For a reasonably self-contained treatment of the action of various groups of
automorphisms of bilinear forms on tensor and alternating algebras, together
with numerous classical examples, I refer to:

R. Howg, Remarks on classical invariant theory, Trans. AMS 313 (1989),

pp- 539-569

§1 DEFINITION AND BASIC PROPERTIES

Consider the category of modules over a commutative ring R.

We recall that an r-multilinear map f: E” — F is said to be alternating
if f(xy,...,x,) = 0 whenever x; = x; for some i # j.

Let a, be the submodule of the tensor product T7(E) generated by all elements
of type

xl ® e ® xr
where x; = x; for some i # j. We define
/N'(E) = T"(E)/a,.

Then we have an r-multilinear map E” — /\"(E) (called canonical) obtained

731

S. Lang, Algebra

© Springer Science+Business Media LLC 2002
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from the composition
E" > T(E) - T(E)/a, = \"(E).

It is clear that our map is alternating. Furthermore, it is universal with respect
to r-multilinear alternating maps on E. In other words, if f: E® — F is such a
map, there exists a unique linear map f,,: /\"(E) - F such that the following
diagram is commutative:

/N(E)

Our map f, exists because we can first get an induced map 7'(E) — F making
the following diagram commutative:

T"(E)

E(’) J
T~ ;

and this induced map vanishes on a,, hence inducing our f, .

The image of an element (x,,...,x,)€E® in the canonical map into
/\'(E) will be denoted by x; A --- A x,. Itisalso theimageof x; ® -+ ® x, in
the factor homomorphism T"(E) —» /\"(E).

In this way, /\” becomes a functor, from modules to modules. Indeed, let
u: E— F be a homomorphism. Given elements x;, ..., x, € E, we can map

X, x) > ulx) A Aulx,) € /\’(F).
This map is multilinear alternating, and therefore induces a homomorphism
N@wy: N(E) = /\'(F).
The association u — /\"(u) is obviously functorial.

Example. Open any book on differential geometry (complex or real) and
you will see an application of this construction when E is the tangent space of
a point on a manifold, or the dual of the tangent space. When taking the dual,
the construction gives rise to differential forms.

We let /\(E) be the direct sum

Am=@Nm
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We shall make /\(E) into a graded R-algebra and call it the alternating algebra
of E, or also the exterior algebra, or the Grassmann algebra. We shall first
discuss the general situation, with arbitrary graded rings.

Let G be an additive monoid again, and let 4 = @ 4, be a G-graded

reG
R-algebra. Suppose given for each A, a submodule q,, and let a = P q,.
reG
Assume that ais an ideal of 4. Then a is called a homogeneous ideal, and we can

define a graded structure on A/a. Indeed, the bilinear map
Ar X As - Ar+s

sends a, x A,into a,,,and similarly, sends 4, x a,into a,,,. Thus using repre-
sentatives in A4,, A, respectively, we can define a bilinear map

Ar/ar X As/as - Ar+s/ar+sa

and thus a bilinear map A/a x A/a — A/a, which obviously makes A/a into a
graded R-algebra.
We apply this to T"(E) and the modules a, defined previously. If

xp=x; (i#])
in a product x; A -+ A Xx,, then for any y,, ..., y, € E we see that
X;p A AX A YL A A Y

liesin a, , and similarly for the product on the left. Hence the direct sum & a,
is an ideal of T(E), and we can define an R-algebra structure on T(E)/a. The
product on homogeneous elements is given by the formula

((cr A AX), (LA AV B XA AX, AYL A A Y

We use the symbol A also to denote the product in /\(E). This product is called
the alternating product or exterior product. If x € £ and y € E, then
XAy = —Yy A x, as follows from the fact that (x + y) A (x + y) = 0.

We observe that /\ is a functor from the category of modules to the category
of graded R-algebras. To each linear map f : E — F we obtain a map

NSO NE) > \(F)

which is such that for x,, ..., x, € E we have

ANDC A Ax) = fxg) A A f(X).

Furthermore, /\(f) is @ homomorphism of graded R-algebras.
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Proposition 1.1. Ler E be free of dimension n over R. If r > n then
/N(E) =0. Let {vy,...,v,} be abasis of E over R. If 1 <r < n, then
/N\'(E) is free over R, and the elements

Uy, At AD < <i

i r

form a basis of /\"(E) over k. We have
. n
dlmR /\I(E) = (r)

Proof. We shall first prove our assertion when r = n. Every element of E
can be written in the form )_ a;v;, and hence using the formulax A y = —y A x
we conclude that v, A --- A v, generates /\"(E). On the other hand, we know
from the theory of determinants that given a € R, there exists a unique multi-
linear alternating form f, on E such that

fivy, ..., 0) = a.

Consequently, there exists a unique linear map

AYE) > R

taking the value a on v, A --- A v,. From this it follows at once that
vy A - A v, is a basis of /\"(E) over R.
We now prove our statement for 1 £ r £ n. Suppose that we have a relation

0=>auyv, A AU,

with i} < --- <1, and a; € R. Select any r-tuple (j) = (ji, ..., j,) such that
ji <---<j,andletj,,4,...,J, be those values of i which do not appear among
(jis - - -»J»). Take the alternating product withv; A --- A v;,. Then we shall
have alternating products in the sum with repeated components in all the terms
except the (j)-term, and thus we obtain

O0=agv, Ao AV, A s AU

Reshuffling v;, A -+ A v;, into v, A -+ A v, simply changes the right-hand
side by a sign. From what we proved at the beginning of this proof, it follows
that a;, = 0. Hence we have proved our assertion for 1 £ r < n.

When r = 0, we deal with the empty product, and 1 is a basis for /\°(E) = R
over R. We leave the case r > n as a trivial exercise to the reader.

The assertion concerning the dimension is trivial, considering that there is a
bijection between the set of basis elements, and the subsets of the set of integers

1,...,n).
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Remark. It is possible to give the first part of the proof, for /\"(E), without
assuming known the existence of determinants. One must then show that a,
admits a 1-dimensional complementary submodule in T"(E). This can be done
by simple means, which we leave as an exercise which the reader can look up
in the more general situation of §4. When R is a field, this exercise is even more
trivial, since one can verify at once that v; ® - - - ® v, does not lie in a,. This
alternative approach to the theorem then proves the existence of determinants.

Proposition 1.2. Let
0—-E -E—E—0

be an exact sequence of free R-modules of finite ranks r, n, and s respectively.
Then there is a natural isomorphism

o:/\N'E'® /\' E"—> /\"E.

This isomorphism is the unique isomorphism having the following property. For

elements vy,..., v, € E' and wy, ..., w, € E", let uy, ..., u, be liftings of
Wy, ..., wgin E. Then
QUL A AD)R (W A AW)) =0V A" AU AU A" A g

Proof. The proof proceeds in the usual two steps. First one shows the
existence of a homomorphism ¢ having the desired effect. The value on the right
of the above formula is independent of the choice of u;,..., u, lifting
Wi, . . ., W, by using the alternating property, so we obtain a homomorphism ¢.
Selecting in particular {v;, ..., v,} and {wy, ..., w,} to be bases of E' and E"
respectively, one then sees that ¢ is both injective and surjective. We leave the
details to the reader.

Given a free module E of rank n, we define its determinant to be
det E = /\™E = /\"E.
Then Proposition 1.2 may be reformulated by the isomorphism formula
det(E') @ det(E") = det(E).

If R = k is a field, then we may say that det is an Euler-Poincaré map on the
category of finite dimensional vector spaces over k.

Example. Let V be a finite dimensional vector space over R. By a volume
on V we mean a norm | || on det V. Since V is finite dimensional, such a norm
is equivalent to assigning a positive number ¢ to a given basis of det(V). Such
a basis can be expressed in the forme; A - - A e,, where {e;, . . ., e,} is a basis
of V. Then for a € R we have

lae a - A e,ll = lalc.
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In analysis, given a volume as above, one then defines a Haar measure u on V
by defining the measure of a set S to be

u<s>=fue1A---Aenudx1---dx,,,
S

where x,, ..., x, are the coordinates on V with respect to the above basis. As
an exercise, show that the expression on the right is the independent of the choice
of basis.

Proposition 1.2 is a special case of the following more general situation. We
consider again an exact sequence of free R-modules of finite rank as above. With
respect to the submodule E’ of E, we define

/\'E = submodule of /\"E generated by all elements
Xp A AXp A Yier At A Yy
with x7, ..., x; € E' viewed as submodule of E.

Then we have a filtration
NIE > Nl iE.
Proposition 1.3. There is a natural isomorphism
/\iE, ® /\"_iE” - /\:'E//\T+ (E.

Proof. Let x7,...,x,_; be elements of E”, and lift them to elements
V1s - .- Yu_; of E. We consider the map

! ! s " ! ’
(X, X XL, XhZ) P XU A AXEAYL A A Y

with the right-hand side taken mod /\}, ,E. Then it is immediate that this map
factors through

NE ® N'E" > NEINI:E,

and picking bases shows that one gets an isomorphism as desired.

In a similar vein, we have:

Proposition 1.4. Let E = E' D E" be a direct sum of finite free modules.
Then for every positive integer n, we have a module isomorphism

NE~ @ NE®NE"

ptq=n
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In terms of the alternating algebras, we have an isomorphism

NE =~ NE' @, N\E".

where Q,, is the superproduct of graded algebras.

Proof. Each natural injection of E’ and E” into E induces a natural map on
the alternating algebras, and so gives the homomorphism

/\E/ ®/\E” N /\E,
which is graded, i.e. for p = 0, ..., n we have

NE ® \'"PE" > NE.

To verify that this yields the desired isomorphism, one can argue by picking
bases, which we leave to the reader. The anti-commutation rule of the alternating
product immediately shows that the isomorphism is an algebra isomorphism for
the super product /\E’ ®,, /\E".

We end this section with comments on duality. In Exercise 3, you will prove:

Proposition 1.5. Let E be free of rank n over R. For each positive integer
r, we have a natural isomorphism

NEY) = N\'(EB) .
The isomorphism is explicitly described in that exercise. A more precise property
than “natural” would be that the isomorphism is functorial with respect to the

category whose objects are finite free modules over R, and whose morphisms
are isomorphisms.

Examples. Let L be a free module over R of rank 1. We have the dual
module LY = Homg(L, R), which is also free of the same rank. For a positive
integer m, we define

L m=(V®m=1"® - --- QL' (tensor product taken m times).

Thus we have defined the tensor product of a line with itself for negative integers.
We define L®° = R. You can easily verify that the rule

LO® ® 1L®1 =~ [®(P+q)

holds for all integers p, ¢ € Z, with a natural isomorphism. In particular, if
q = —p then we get R itself on the right-hand side.
Now let E be an exact sequence of free modules:

E:0—-Ey—E —-—E,—0.
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We define the determinant of this exact sequence to be
det(E) = X) det(E,)® V'

As an exercise, prove that det(E) has a natural isomorphism with R, functorial
with respect to isomorphisms of exact sequences.

Examples. Determinants of vector spaces or free modules occur in several
branches of mathematics, e.g. complexes of partial differential operators, homol-
ogy theories, the theory of determinant line bundles in algebraic geometry, etc.
For instance, given a non-singular projective variety V over C, one defines the
determinant of cohomology of V to be

det H(V) = (X) det H(V)®~D',

where H'(V) are the cohomology groups. Then det H(V) is a one-dimensional
vector space over C, but there is no natural identification of this vector space
with C, because a priori there is no natural choice of a basis. For a notable
application of the determinant of cohomology, following work of Faltings, see
Deligne, Le determinant de la cohomologie, in Ribet, K. (ed.), Current Trends
in Arithmetical Algebraic Geometry, Proc. Arcata 1985. (Contemporary Math. vol
67, AMS (1985), pp. 93-178.)

§2. FITTING IDEALS

Certain ideals generated by determinants are coming more and more into
use, in several branches of algebra and algebraic geometry. Therefore I include
this section which summarizes some of their properties. For a more extensive
account, see Northcott’s book Finite Free Resolutions which I have used, as well
as the appendix of the paper by Mazur-Wiles: “Class Fields of abelian extensions
of Q,” which they wrote in a self-contained way. (Invent. Math. 76 (1984), pp.
179-330.)

Let R be a commutative ring. Let A beap x g matrix and Ba g x s matrix
with coefficients in R. Let » 2 0 be an integer. We define the determinant ideal
I(A) to be the ideal generated by all determinants of r x r submatrices of 4.
This ideal may also be described as follows. Let S? be the set of sequences

J=(p-.mjowithl £j; <j, <---<j, Sp
Let 4 = (a;)). Let 1 <r < min(p, q). Let K = (k,, ..., k,) be another element
of S?. We define

a a a

Jiky Jikz2 Jikr

AN = joky Aok, Ujok,
kK = . . .

ik, Gjoka Ak,
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where the vertical bars denote the determinant. With J, K ranging over S§?
we may view AY) as the JK-component of a matrix A” which we call the r-th
exterior power of 4.

One may also describe the matrix as follews. Let {e,, .. ., ep} be a basis of
RP and {u,, ..., u,} a basis of R?. Then the elements

e Arene, (i <jp<--<j)

form a basis for /\'R” and similarly for a basis of /\'R%. We may view 4 as a
linear map of R? into R4, and the matrix 4" is then the matrix representing the
exterior power /\"A viewed as a linear map of /\'R” into /\'R% On the whole,
this interpretation will not be especially useful for certain computations, but it
does give a slightly more conceptual context for the exterior power. Just at the
beginning, this interpretation allows for an immediate proof of Proposition 2.1.

For r = 0 we define A” to be the 1 x 1 matrix whose single entry is the
unit element of R. We also note that 4" = 4.

Proposition 2.1. Let A be a p X g mairix and B a ¢ X s matrix. Then

(AB)" = AVB"  for r20.

If one uses the alternating products as mentioned above, the proof simply
says that the matrix of the composite of linear maps with respect to fixed bases
is the product of the matrices. If one does not use the alternating products, then
one can prove the proposition by a direct computation which will be left to the
reader.

We have formed a matrix whose entries are indexed by a finite set S?. For
any finite set $ and doubly indexed family (c,;x) with J, K € S we may also
define the determinant as

det(CJK) = z 6(0-)(‘]11 CJ,G'(J))

where ¢ ranges over all permutations of the set.

For r = 0 we define the determinant ideal 1,(A4) to be the ideal generated by
all the components of A", or equivalently by all r x r subdeterminants of A.
We have by definition

A® =R and A" = ideal generated by the components of A.

Furthermore
I(4) =0 for r > min(p,q)

and the inclusions

R=1,A)>1,(A)>I,(4)> -
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By Proposition 10.1, we also have

) I(AB) < I(A) n I(B).

Therefore, if A = UBU’ where U, U’ are square matrices of determinant 1, then
03] 1(A) = 1(B).

Next, let E be an R-module. Let x,,..., x, be generators of E. Then we
may form the matrix of relations (a;, ..., a,) € R? such that

Suppose first we take only finitely many relations, thus giving rise to a p x g
matrix A. We form the determinant ideal I,(A). We let the determinant ideals
of the family of generators be:

I(xy, ..., x;) = I(x) = ideal generated by I,(A4) for all 4.

Thus we may in fact take the infinite matrix of relations, and say that I.(x) is
generated by the determinants of all » x r submatrices. The inclusion relations
of (1) show that

R=1Iy(x) 2 I;(x) 2 I(x) > -
I(x)=0 if r>q.
Furthermore, it is easy to see that if we form a submatrix M of the matrix of all

relations by taking only a family of relations which generate the ideal of all
relations in R4, then we have

IL(M) = 1,(x).

We leave the verification to the reader. We can take M to be a finite matrix when
E is finitely presented, which happens if R is Noetherian.

In terms of this representation of a module as a quotient of R?, we get the
following characterization.

Proposition 2.2. Let R?— E — 0 be a representation of E as a quotient of
R, and let x,, . . ., x, be the images of the unit vectors in R9. Then I (x) is the
ideal generated by all values

/1(W1, vy Wr)
where wy, ..., w, € Ker(R? - E) and A € L(R% R).

Proof. This is immediate from the definition of the determinant ideal.
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The above proposition can be useful to replace a matrix computation by a
more conceptual argument with fewer indices. The reader can profitably trans-
late some of the following matrix arguments in these more invariant terms.

We now change the numbering, and let the Fitting ideals be:

Fi(x) = 1, (%) for 0<k<gq

F(x)=R when k > q.

Lemma 2.3. The Fitting ideal F,(x) does not depend on the choice of
generators (x).
Proof. Lety,,...,ybeelements of E. We shall prove that

Ir(x) = Ir+s(x9 y)

The relations of (x, y) constitute a matrix of the form

apy as, 0 .. 0
W= ap a, O - 0
b, by, 1 0 - 0
by, by 0 1

By elementary column operations, we can change this to a matrix

A 0

0 1
and such operations do not change the determinant ideals by (2). Then we
conclude that for all r > 0 we have

Ir(A) = Ir+s(W) < Ir+s(x’ y)

This proves that I(x) < I, (x, y).
Conversely, let C be a matrix of relations between the generators (x, y).
We also have a matrix of relations

By elementary row operations, we can bring this matrix into the same shape
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as B above, with some matrix of relations A’ for (x), namely
A 0
Z =
(5 1)

Ir(A’) = Ir+s(Z’) = Ir+s(Z) > Ir+s(c)>

Then

whence I,,(C) = I(x). Taking all possible matrices of relations C shows
that I,, (x, y) < I,(x), which combined with the previous inequality yields

Ir+s(x’ y) = Ir(x)'
Now given two families of generators (x) and (y), we simply put them side
by side (x, y) and use the new numbering for the F, to conclude the proof of

the lemma.
Now let E be a finitely generated R-module with presentation
0-K->RI-> E-Q,

where the sequence is exact and K is defined as the kernel. Then K is generated
by g-vectors, and can be viewed as an infinite matrix. The images of the unit
vectors in R? are generators (x,,..., x,). We define the Fitting ideal of the
module to be

F\(E) = Fy(x).

Lemma 2.3 shows that the ideal is independent of the choice of presentation.
The inclusion relations of a determinant ideal /,(A) of a matrix now translate
into reverse inclusion relations for the Fitting ideals, namely:

Proposition 2.4.
(1) We have
Fo(E) = Fy(E) = Fy(E) = -+
(ii) If E can be generated by q elements, then
F(E)=R.
(iii) If E is finitely presented then F(E) is finitely generated for all k.
This last statement merely repeats the property that the determinant ideals of a

matrix can be generated by the determinants associated with a finite submatrix
if the row space of the matrix is finitely generated.



